-
Notifications
You must be signed in to change notification settings - Fork 2
/
train_image_quality_datasets.py
370 lines (330 loc) · 13.1 KB
/
train_image_quality_datasets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
import time
import copy
import datetime
import os
import matplotlib.pyplot as plt
import seaborn as sns; sns.set()
from PIL import Image
import numpy as np
import pandas as pd
from scipy.stats import pearsonr
import torch
import torch.nn as nn
from torch import optim
from torch.utils.data import DataLoader
from torch.utils.data import Dataset
from torchvision import transforms
import torchvision.models as models
from biasLoss import biasLoss
#%% ---- TRAINING OPTIONS ----------------------------------------------------
# Main training options
opts = {
'lr': 0.0001, # learning rate
'bs': 32, # mini-batch size
'epochs': 1000, # maximum training epochs
'early_stop': 10, # early stopping on validation Pearson's correlation
'num_workers': 0, # number of workers of DataLoaders
'model_name': 'resnet50',
'pretrained': True, # image net pretraining
'augmented': True, # random crop training images
'bias_fun': 'first_order', # either "first_order" or "third_order" bias estimation
'r_th': 0.7, # minimum correlation on training set before first bias estimation
'anchor_db': 'tid_2013', # string with dataset name to which biases should be anchored / None if no anchoring used
'mse_weight': 0.0, # weight of "vanilla MSE loss" added to bias loss
}
main_folder = './'
dataset_folder = 'D:/image_quality_datasets/' # Folder with image quality datasets (see readme)
results_subfolder = 'results'
plot_images = True # plot 10 random images
plot_every_epoch = True # show training process and bias estimation every epoch
plot_final_results = True # show final results
# train and val split
train_dbs = [
'tid_2013',
'live_md',
'live_iqa',
'live_challenge',
]
val_dbs = ['csiq']
#%% ---- LOAD CSV / USE ONE DATASET FOR VALIDATION ----------------------------
# Runname and savepath
runname = datetime.datetime.now().strftime("%y%m%d_%H%M%S%f")
resultspath = os.path.join(main_folder, results_subfolder)
if not os.path.exists(resultspath):
os.makedirs(resultspath)
resultspath = os.path.join(resultspath, runname)
# Load dataset csv files.
dfile = pd.read_csv(os.path.join(main_folder, 'image_datasets.csv'))
dfile_train = dfile[dfile.db.isin(train_dbs)].reset_index(drop=True)
dfile_val = dfile[dfile.db.isin(val_dbs)].reset_index(drop=True)
#%% ---- DATASET AND PLOTS ----------------------------------------------------
# Dataset to load images with index that is used to assign samples to dataset during training
class ImageIdxDataset(Dataset):
'''
ImageIdxDataset class.
Loads images, loads them to RAM. Outputs image, MOS, and index, which is
needed to assign the images to their corresponding dataset.
'''
def __init__(self, main_dir, df, augmented=False):
self.df = df
self.main_dir = main_dir
self.augmented = augmented
self._get_transform()
self._load_images()
def _load_images(self):
self.images = [np.asarray(Image.open( os.path.join(self.main_dir, file_name) )) for file_name in self.df.deg_file]
self.mos = self.df.mos_norm.to_numpy().reshape(-1,1).astype('float32')
def _get_transform(self):
if self.augmented:
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.RandomCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
else:
self.transform = transforms.Compose([
transforms.ToPILImage(),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(
mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
])
def __getitem__(self, index):
img = self.images[index]
img = self.transform(img)
return img, self.mos[index], index
def __len__(self):
return len(self.images)
print('Loading datasets to RAM ...')
ds_train = ImageIdxDataset(dataset_folder, dfile_train, augmented=opts['augmented'])
ds_val = ImageIdxDataset(dataset_folder, dfile_val, augmented=False)
print('--> done!')
# Plot 10 random validation images with their MOS value
if plot_images:
random_index = np.random.choice(len(ds_val), 10, replace=False)
for random_index in random_index:
x, y, idx = ds_val[random_index]
inp = x.numpy().transpose((1, 2, 0))
mean = np.array([0.485, 0.456, 0.406])
std = np.array([0.229, 0.224, 0.225])
inp = std * inp + mean
inp = np.clip(inp, 0, 1)
plt.imshow(inp)
plt.grid(None)
plt.axis('off')
plt.title('MOS: {:0.2f}'.format(y[0]))
plt.show()
def calc_mapped(x,b):
if b.ndim==1:
x = b[0] + x * b[1] + x**2 * b[2] + x**3 * b[3]
elif b.ndim==2:
x = b[:,0] + x * b[:,1] + x**2 * b[:,2] + x**3 * b[:,3]
else:
raise ValueError
return x
#%% ---- MODEL AND EVALUATION FUNCTION ----------------------------------------
# Select model
if opts['model_name']=='resnet18':
model = models.resnet18(pretrained=opts['pretrained'])
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 1)
elif opts['model_name']=='resnet50':
model = models.resnet50(pretrained=opts['pretrained'])
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 1)
elif opts['model_name']=='resnet101':
model = models.resnet101(pretrained=opts['pretrained'])
num_ftrs = model.fc.in_features
model.fc = nn.Linear(num_ftrs, 1)
else:
raise NotImplementedError
# Model evaluation function
def eval_model(
model,
ds,
target_mos='mos_norm',
do_plot=False,
do_print=False,
bs=16,
num_workers=0):
# Dataloader without shuffling
dl = DataLoader(
ds,
batch_size=bs,
shuffle=False,
drop_last=False,
num_workers=num_workers)
# Get predictions
model.eval()
with torch.no_grad():
y_hat = [model(xb.to(dev)).cpu().detach().numpy() for xb, yb, idx in dl]
y_hat = np.concatenate(y_hat).reshape(-1)
y = ds.df[target_mos].to_numpy().reshape(-1)
# Evaluate each database
results_db = []
for db_name in ds.df.db.unique():
idx_db = (ds.df.db==db_name).to_numpy().nonzero()[0]
y_hat_db = y_hat[idx_db]
y_db = y[idx_db]
rmse = np.sqrt( np.mean( (y_hat_db-y_db)**2 ) )
r = pearsonr(y_db.reshape(-1), y_hat_db.reshape(-1))[0]
results_db.append({'db': db_name, 'r': r, 'rmse': rmse})
# Plot
if do_plot:
plt.figure(figsize=(5.0, 5.0))
plt.clf()
plt.plot(y_hat_db, y_db, 'o', label='Original data', markersize=5)
plt.plot([0, 5], [0, 5], 'k')
plt.axis([1, 5, 1, 5])
plt.gca().set_aspect('equal', adjustable='box')
plt.grid(True)
plt.xticks(np.arange(1, 6))
plt.yticks(np.arange(1, 6))
plt.title(db_name)
plt.ylabel('Subjective MOS')
plt.xlabel('Predicted MOS')
plt.show()
# Print
if do_print:
print('%-30s r: %0.2f, rmse: %0.2f'
% (db_name+':', r, rmse))
results_db = pd.DataFrame(results_db)
results = {
'r': results_db.r.to_numpy().mean(),
'rmse': results_db.rmse.to_numpy().mean(),
}
return results, y, y_hat
#%% --- TRAINING LOOP --------------------------------------------------------
# Load biasLoss class
bias_loss = biasLoss(
ds_train.df.db,
anchor_db=opts['anchor_db'],
mapping=opts['bias_fun'],
r_th=opts['r_th'],
mse_weight=opts['mse_weight'],
)
dl_train = DataLoader(
ds_train,
batch_size=opts['bs'],
shuffle=True,
drop_last=True,
num_workers=opts['num_workers'])
dev = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
print('running on:')
print(dev)
model.to(dev)
opt = optim.Adam(model.parameters(), lr=opts['lr'])
best_model_wts = copy.deepcopy(model.state_dict())
# Ini early stopping
best_r = 0
es = 0
tic_overall = time.time()
print('--> start training')
results = []
for epoch in range(1,opts['epochs']+1):
tic_epoch = time.time()
# Optimize model weights
k = 0
loss = 0.0
model.train()
for xb, yb, idx in dl_train:
yb = yb.to(dev)
yb_hat = model(xb.to(dev))
lossb = bias_loss.get_loss(yb, yb_hat, idx)
lossb.backward()
opt.step()
opt.zero_grad()
loss += lossb.item()
k += 1
loss = loss/k
# Evaluate after each epoch
results_train, y_train, y_train_hat = eval_model(model, ds_train, do_plot=False, do_print=False)
results_val, y_val, y_val_hat = eval_model(model, ds_val, do_plot=False, do_print=False)
# Update bias for loss
bias_loss.update_bias(y_train, y_train_hat)
# Plot
if plot_every_epoch:
x = np.linspace(-10,20,100)
plt.figure(figsize=(12, 2))
dfile_train['mos_hat'] = y_train_hat
dfile_train['b'] = bias_loss.b.tolist()
for i, db in enumerate(dfile_train.db.unique()):
y_db = dfile_train.loc[dfile_train.db==db, 'mos_norm'].to_numpy()
y_hat_db = dfile_train.loc[dfile_train.db==db, 'mos_hat'].to_numpy()
b_db = np.vstack(dfile_train.loc[dfile_train.db==db, 'b'])[0]
y_est = calc_mapped(x, b_db)
plt.subplot(1,5,i+1)
plt.plot(y_hat_db, y_db, 'o', markersize=2)
plt.plot([0, 5], [0, 5], 'k')
plt.plot(x, y_est)
plt.yticks(np.arange(-10,10))
plt.axis([y_hat_db.min().clip(max=1),y_hat_db.max().clip(min=5),y_db.min().clip(max=1),y_db.max().clip(min=5)])
plt.title('train: ' + db)
plt.subplot(1,5,5)
plt.plot(y_val_hat, y_val, 'o', markersize=2)
plt.plot([0, 5], [0, 5], 'k')
plt.yticks(np.arange(-10,10))
plt.axis([y_val_hat.min().clip(max=1),y_val_hat.max().clip(min=5),y_val.min().clip(max=1),y_val.max().clip(min=5)])
plt.title('val: ' + val_dbs[0])
plt.show()
# Early stopping
if results_val['r'] > best_r:
best_r = results_val['r']
best_model_wts = copy.deepcopy(model.state_dict())
es = 0
else:
es+=1
if es>=opts['early_stop']:
break
# Print results
toc_epoch = time.time() - tic_epoch
print('epoch {}, runtime {:.2f}s, loss {:.3f}, r_train_mean {:.3f}, rmse_val {:.3f}, r_val {:.3f}'.format(
epoch, toc_epoch, loss, results_train['r'], results_val['rmse'], results_val['r']) )
# Save results history
results.append({
'runname': runname,
'epoch': epoch,
**opts,
'train_dbs': train_dbs,
'val_dbs': val_dbs,
**results_val,
})
pd.DataFrame(results).to_csv(resultspath+'__results.csv', index=False)
#%% --- EVALUATE BEST MODEL ---------------------------------------------------
print('training finished!')
model.load_state_dict(best_model_wts)
results_train, y_train, y_train_hat = eval_model(model, ds_train, do_print=True)
results_val, y_val, y_val_hat = eval_model(model, ds_val, do_print=True)
toc_overall = time.time() - tic_overall
print('epochs {}, runtime {:.0f}s, rmse_val {:.3f}, r_val {:.3f}'.format(epoch+1, toc_overall, results_val['rmse'], results_val['r']) )
# Plot
if plot_final_results:
x = np.linspace(-10,20,100)
plt.figure(figsize=(12, 2))
dfile_train['mos_hat'] = y_train_hat
bias_loss.update_bias(y_train, y_train_hat)
dfile_train['b'] = bias_loss.b.tolist()
for i, db in enumerate(dfile_train.db.unique()):
y_db = dfile_train.loc[dfile_train.db==db, 'mos_norm'].to_numpy()
y_hat_db = dfile_train.loc[dfile_train.db==db, 'mos_hat'].to_numpy()
b_db = np.vstack(dfile_train.loc[dfile_train.db==db, 'b'])[0]
y_est = calc_mapped(x, b_db)
plt.subplot(1,5,i+1)
plt.plot(y_hat_db, y_db, 'o', markersize=2)
plt.plot([0, 5], [0, 5], 'k')
plt.plot(x, y_est)
plt.yticks(np.arange(-10,10))
plt.axis([y_hat_db.min().clip(max=1),y_hat_db.max().clip(min=5),y_db.min().clip(max=1),y_db.max().clip(min=5)])
plt.title('train: ' + db)
plt.subplot(1,5,5)
plt.plot(y_val_hat, y_val, 'o', markersize=2)
plt.plot([0, 5], [0, 5], 'k')
plt.yticks(np.arange(-10,10))
plt.axis([y_val_hat.min().clip(max=1),y_val_hat.max().clip(min=5),y_val.min().clip(max=1),y_val.max().clip(min=5)])
plt.title('val: ' + val_dbs[0])
plt.show()