-
Notifications
You must be signed in to change notification settings - Fork 2
/
model.py
125 lines (103 loc) · 4.1 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
import numpy as np
import tensorflow as tf
import tensorflow.contrib.rnn as rnn
def normalized_columns_initializer(std=1.0):
def _initializer(shape, dtype=None, partition_info=None):
out = np.random.randn(*shape).astype(np.float32)
out *= std / np.sqrt(np.square(out).sum(axis=0, keepdims=True))
return tf.constant(out)
return _initializer
def flatten(x):
return tf.reshape(x, [-1, np.prod(x.get_shape().as_list()[1:])])
def conv2d(x,
num_filters,
name,
filter_size=(3, 3),
stride=(1, 1),
pad="SAME",
dtype=tf.float32,
collections=None):
with tf.variable_scope(name):
stride_shape = [1, stride[0], stride[1], 1]
filter_shape = [
filter_size[0], filter_size[1], int(x.get_shape()[3]), num_filters
]
# there are "num input feature maps * filter height * filter width"
# inputs to each hidden unit
fan_in = np.prod(filter_shape[:3])
# each unit in the lower layer receives a gradient from:
# "num output feature maps * filter height * filter width" /
# pooling size
fan_out = np.prod(filter_shape[:2]) * num_filters
# initialize weights with random weights
w_bound = np.sqrt(6. / (fan_in + fan_out))
w = tf.get_variable(
"W",
filter_shape,
dtype,
tf.random_uniform_initializer(-w_bound, w_bound),
collections=collections)
b = tf.get_variable(
"b", [1, 1, 1, num_filters],
initializer=tf.constant_initializer(0.0),
collections=collections)
return tf.nn.conv2d(x, w, stride_shape, pad) + b
def linear(x, size, name, initializer=None, bias_init=0):
w = tf.get_variable(
name + "/w", [x.get_shape()[1], size], initializer=initializer)
b = tf.get_variable(
name + "/b", [size], initializer=tf.constant_initializer(bias_init))
return tf.matmul(x, w) + b
def categorical_sample(logits, d):
value = tf.squeeze(
tf.multinomial(logits - tf.reduce_max(logits, [1], keep_dims=True), 1),
[1])
return tf.one_hot(value, d)
class LSTMPolicy(object):
def __init__(self, ob_space, ac_space):
self.x = x = tf.placeholder(tf.float32, [None] + list(ob_space))
for i in range(4):
x = tf.nn.elu(conv2d(x, 32, "l{}".format(i + 1), [3, 3], [2, 2]))
# introduce a "fake" batch dimension of 1 after flatten so that we can do LSTM over time dim
x = tf.expand_dims(flatten(x), [0])
size = 256
lstm = rnn.BasicLSTMCell(size, state_is_tuple=True)
self.state_size = lstm.state_size
step_size = tf.shape(self.x)[:1]
c_init = np.zeros((1, lstm.state_size.c), np.float32)
h_init = np.zeros((1, lstm.state_size.h), np.float32)
self.state_init = [c_init, h_init]
c_in = tf.placeholder(tf.float32, [1, lstm.state_size.c])
h_in = tf.placeholder(tf.float32, [1, lstm.state_size.h])
self.state_in = [c_in, h_in]
state_in = rnn.LSTMStateTuple(c_in, h_in)
lstm_outputs, lstm_state = tf.nn.dynamic_rnn(
lstm,
x,
initial_state=state_in,
sequence_length=step_size,
time_major=False)
lstm_c, lstm_h = lstm_state
x = tf.reshape(lstm_outputs, [-1, size])
self.logits = linear(x, ac_space, "action",
normalized_columns_initializer(0.01))
self.vf = tf.reshape(
linear(x, 1, "value", normalized_columns_initializer(1.0)), [-1])
self.state_out = [lstm_c[:1, :], lstm_h[:1, :]]
self.sample = categorical_sample(self.logits, ac_space)[0, :]
self.var_list = tf.get_collection(tf.GraphKeys.TRAINABLE_VARIABLES,
tf.get_variable_scope().name)
def get_initial_features(self):
return self.state_init
def act(self, ob, c, h):
sess = tf.get_default_session()
return sess.run([self.sample, self.vf] + self.state_out,
{self.x: [ob],
self.state_in[0]: c,
self.state_in[1]: h})
def value(self, ob, c, h):
sess = tf.get_default_session()
return sess.run(self.vf,
{self.x: [ob],
self.state_in[0]: c,
self.state_in[1]: h})[0]