-
Notifications
You must be signed in to change notification settings - Fork 0
/
app.py
228 lines (189 loc) · 8.05 KB
/
app.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
from src.search.ga import GeneticSearch
from src.hw_nats_fast_interface import HW_NATS_FastInterface
from src.utils import DEVICES, DATASETS
import streamlit as st
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import plotly.graph_objects as go
from collections import OrderedDict
st.set_page_config(layout="wide")
TIME_TO_SCORE_EACH_ARCHITECTURE=0.15
DAYS_7 = 604800
NEBULOS_COLOR = '#FF6961'
TF_COLOR = '#A7C7E7'
@st.cache_data(ttl=DAYS_7)
def load_lookup_table():
"""Load recap table of NebulOS metrics and cache it.
"""
df_nebuloss = pd.read_csv('data/df_nebuloss.csv').rename(columns = {'test_accuracy' : 'validation_accuracy'})
return df_nebuloss
@st.cache_data(ttl=DAYS_7)
def subset_dataframe(df_nebuloss, dataset):
"""Subset df_nebuloss based on the right dataset.
"""
return df_nebuloss[df_nebuloss['dataset'] == dataset]
@st.cache_data(ttl=DAYS_7)
def compute_quantiles(df_nebuloss_dataset):
"""Turn the values of df_nebuloss (of a certain dataset) into the corresponding quantiles, computed along the columns
"""
# compute quantiles
quantiles = df_nebuloss_dataset.drop(columns = ['idx']).rank(pct = True)
# re-attach the original indices
quantiles['idx'] = df_nebuloss_dataset['idx']
return quantiles
# Streamlit app
def main():
# mapping the devices pseudo-symbols to actual names
device_mapping_dict = {
"edgegpu": "NVIDIA Jetson nano",
"eyeriss": "Eyeriss",
"fpga": "FPGA",
}
# load the lookup table of NebulOS metrics
df_nebuloss = load_lookup_table()
# add a title
st.sidebar.title("🚀 NebulOS 🌿")
# dropdown menu for dataset selection
dataset = st.sidebar.selectbox("Select Dataset", DATASETS)
# dropdown menu for device selection
device = st.sidebar.selectbox("Select Device", DEVICES)
# slider for performance weight selection
performance_weight = st.sidebar.slider(
"Select trade-off between PERFORMANCE WEIGHT and HARDWARE WEIGHT.\nHigher values will give larger weight to the performance.",
min_value=0.0,
max_value=1.0,
value=0.5,
step=0.05
)
# hardware weight (complementary to performance weight)
hardware_weight = 1.0 - performance_weight
# subset the dataframe for the current daset and device
df_nebuloss_dataset = subset_dataframe(df_nebuloss, dataset)
# best architecture index
best_arch_idx = 9930
# Trigger the search and plot NebulOS Architecture
searchspace_interface = HW_NATS_FastInterface(device=device, dataset=dataset)
search = GeneticSearch(
searchspace=searchspace_interface,
fitness_weights=np.array([performance_weight, hardware_weight])
)
results = search.solve(return_trajectory=True)
arch_idx = searchspace_interface.architecture_to_index["/".join(results[0].genotype)]
# Create scatter plot
scatter_trace1 = go.Scatter(
x=df_nebuloss_dataset.loc[df_nebuloss['dataset'] == dataset, f'{device}_energy'],
y=df_nebuloss_dataset.loc[df_nebuloss['dataset'] == dataset, 'validation_accuracy'],
mode='markers',
marker=dict(color='#D3D3D3', size=5),
name='Architectures in the search space'
)
# Scatter plot for best architecture
scatter_trace2 = go.Scatter(
x=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == best_arch_idx, f'{device}_energy'],
y=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == best_arch_idx, 'validation_accuracy'],
mode='markers',
marker=dict(color=TF_COLOR, symbol='circle-dot', size=12),
name='Best TF-Architecture'
)
scatter_trace3 = go.Scatter(
x=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == arch_idx, f'{device}_energy'],
y=df_nebuloss_dataset.loc[df_nebuloss_dataset['idx'] == arch_idx, 'validation_accuracy'],
mode='markers',
marker=dict(color=NEBULOS_COLOR, symbol='circle-dot', size=12),
name='NebulOS Architecture'
)
scatter_layout = go.Layout(
title=f'Validation Accuracy vs. {device_mapping_dict[device]} Energy Consumption',
xaxis=dict(title=f'{device.upper()} Energy'),
yaxis=dict(title='Validation Accuracy'),
showlegend=True
)
scatter_fig = go.Figure(data=[scatter_trace1, scatter_trace2, scatter_trace3], layout=scatter_layout)
# Extracting quantile values
metrics_considered = OrderedDict()
# these are the metrics that we want to plot
metrics_considered["flops"] = "FLOPS",
metrics_considered["params"] = "Num. Params",
metrics_considered["validation_accuracy"] = "Accuracy",
metrics_considered[f"{device}_energy"] = f"{device_mapping_dict[device]} - Energy Consumption",
metrics_considered[f"{device}_latency"] = f"{device_mapping_dict[device]} - Latency"
# this retrieves the optimal row
best_row_to_plot = df_nebuloss_dataset.loc[
df_nebuloss_dataset['idx'] == best_arch_idx,
list(metrics_considered.keys())
].values
# this retrieves the row that has been found by the NAS search
row_to_plot = df_nebuloss_dataset.loc[
df_nebuloss_dataset['idx'] == arch_idx,
list(metrics_considered.keys())
].values
row_to_plot = row_to_plot/best_row_to_plot
best_row_to_plot = best_row_to_plot/best_row_to_plot
best_row_to_plot = best_row_to_plot.flatten().tolist()
row_to_plot = row_to_plot.flatten().tolist()
# Bar chart for NebulOS Architecture
bar_trace1 = go.Bar(
x=list(metrics_considered.keys()),
y=row_to_plot,
name='NebulOS Architecture',
marker=dict(color=NEBULOS_COLOR)
)
# Bar chart for Best TF-Architecture
bar_trace2 = go.Bar(
x=list(metrics_considered.keys()),
y=best_row_to_plot,
name='Best TF-Architecture Found',
marker=dict(color=TF_COLOR)
)
# Layout configuration
bar_layout = go.Layout(
title=f'Hardware-Agnostic Architecture (blue) vs. NebulOS (red)',
yaxis=dict(title="(%)Hardware-Agnostic Architecture Value"),
barmode='group'
)
# Combining traces with the layout
bar_fig = go.Figure(data=[bar_trace2, bar_trace1], layout=bar_layout)
# Create two columns in Streamlit to show data near each other
col1, col2 = st.columns(2)
# Display scatter plot in the first column
with col1:
st.plotly_chart(scatter_fig)
# Display bar chart in the second column
with col2:
st.plotly_chart(bar_fig)
best_architecture = df_nebuloss_dataset.loc[
df_nebuloss_dataset['idx'] == best_arch_idx,
list(metrics_considered.keys())
]
best_architecture_string = searchspace_interface[best_arch_idx]["architecture_string"]
found_architecture = df_nebuloss_dataset.loc[
df_nebuloss_dataset['idx'] == arch_idx,
list(metrics_considered.keys())
]
message = \
f"""
<h4>NebulOS Search Process: Outcome</h4>
<p>
This search took ~{results[-1]*TIME_TO_SCORE_EACH_ARCHITECTURE} seconds (scoring {results[-1]} architectures using ~{TIME_TO_SCORE_EACH_ARCHITECTURE} seconds each)
</p>
The architecture found for <b>{device_mapping_dict[device]}</b> is: <b>{searchspace_interface[arch_idx]["architecture_string"]}</b><br>
The optimal (hardware-agnostic) architecture in the searchspace is <b>{best_architecture_string}</b>
</p>
<p>
You can find the recap, in terms of the percentage of the Training-Free metric found in the table to your right 👉
</p>
"""
# Sample data - replace these with your actual ratio values
data = {
"Metric": ["FLOPS", "Number of Parameters", "Validation Accuracy", "Energy Consumption", "Latency"],
"NebulOS vs. Hardware Agnostic Network": ["{:.2g}%".format(val) for val in row_to_plot]
}
col1, _, col2 = st.columns([2,1,2])
recap_df = pd.DataFrame(data).sort_values(by="Metric").set_index("Metric")
with col1:
st.write(message, unsafe_allow_html=True)
with col2:
st.dataframe(recap_df)
if __name__ == "__main__":
main()