You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
Sorry to trouble you, I have a problem about training the keras model.Recently,I used the existing models from keras applications like VGG16,VGG19. The applications provide the existing models which are converted from caffe model. I reproduced the result for inference. But when I want to use the VGG16 model with weights retrain imagenet data,the acc was rised from 0,not a higher acc. First,I think the reason is that tfrecords convert the raw image to (-1.1) but caffe used the raw image which substract mean and convert RGB. Soon, I convert the data in tfrecords look like the data in caffe, but the acc is low too... Second I replace the categorical_crossentropy with sparse_categorical_crossentropy and cancell the one-hot coding. But it doen't work.
I'm sorry for my English is elementary level.
The text was updated successfully, but these errors were encountered:
Sorry to trouble you, I have a problem about training the keras model.Recently,I used the existing models from keras applications like VGG16,VGG19. The applications provide the existing models which are converted from caffe model. I reproduced the result for inference. But when I want to use the VGG16 model with weights retrain imagenet data,the acc was rised from 0,not a higher acc. First,I think the reason is that tfrecords convert the raw image to (-1.1) but caffe used the raw image which substract mean and convert RGB. Soon, I convert the data in tfrecords look like the data in caffe, but the acc is low too... Second I replace the categorical_crossentropy with sparse_categorical_crossentropy and cancell the one-hot coding. But it doen't work.
I'm sorry for my English is elementary level.
The text was updated successfully, but these errors were encountered: