-
Notifications
You must be signed in to change notification settings - Fork 1
/
utils.py
299 lines (235 loc) · 9.42 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
import torch
import numpy as np
import torch.nn as nn
import gym
import os
from collections import deque
import random
from skimage.util.shape import view_as_windows
class eval_mode(object):
def __init__(self, *models):
self.models = models
def __enter__(self):
self.prev_states = []
for model in self.models:
self.prev_states.append(model.training)
model.train(False)
def __exit__(self, *args):
for model, state in zip(self.models, self.prev_states):
model.train(state)
return False
def soft_update_params(net, target_net, tau):
for param, target_param in zip(net.parameters(), target_net.parameters()):
target_param.data.copy_(
tau * param.data + (1 - tau) * target_param.data
)
def set_seed_everywhere(seed):
torch.manual_seed(seed)
if torch.cuda.is_available():
torch.cuda.manual_seed_all(seed)
np.random.seed(seed)
random.seed(seed)
def module_hash(module):
result = 0
for tensor in module.state_dict().values():
result += tensor.sum().item()
return result
def make_dir(dir_path):
try:
os.mkdir(dir_path)
except OSError:
pass
return dir_path
def preprocess_obs(obs, bits=5):
"""Preprocessing image, see https://arxiv.org/abs/1807.03039."""
bins = 2**bits
assert obs.dtype == torch.float32
if bits < 8:
obs = torch.floor(obs / 2**(8 - bits))
obs = obs / bins
obs = obs + torch.rand_like(obs) / bins
obs = obs - 0.5
return obs
class ReplayBuffer(object):
"""Buffer to store environment transitions."""
def __init__(self, obs_shape, action_shape, capacity, batch_size, device):
self.capacity = capacity
self.batch_size = batch_size
self.device = device
# the proprioceptive obs is stored as float32, pixels obs as uint8
obs_dtype = np.float32 if len(obs_shape) == 1 else np.uint8
self.obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.next_obses = np.empty((capacity, *obs_shape), dtype=obs_dtype)
self.actions = np.empty((capacity, *action_shape), dtype=np.float32)
self.rewards = np.empty((capacity, 1), dtype=np.float32)
self.dones = np.empty((capacity, 1), dtype=np.float32)
self.idx = 0
self.last_save = 0
self.full = False
def add(self, obs, action, reward, next_obs, done):
np.copyto(self.obses[self.idx], obs)
np.copyto(self.actions[self.idx], action)
np.copyto(self.rewards[self.idx], reward)
np.copyto(self.next_obses[self.idx], next_obs)
np.copyto(self.dones[self.idx], done)
self.idx = (self.idx + 1) % self.capacity
self.full = self.full or self.idx == 0
def sample(self):
idxs = np.random.randint(
0, self.capacity if self.full else self.idx, size=self.batch_size
)
obses = torch.as_tensor(self.obses[idxs], device=self.device).float()
actions = torch.as_tensor(self.actions[idxs], device=self.device)
rewards = torch.as_tensor(self.rewards[idxs], device=self.device)
next_obses = torch.as_tensor(
self.next_obses[idxs], device=self.device
).float()
dones = torch.as_tensor(self.dones[idxs], device=self.device)
return obses, actions, rewards, next_obses, dones
def save(self, save_dir):
if self.idx == self.last_save:
return
path = os.path.join(save_dir, '%d_%d.pt' % (self.last_save, self.idx))
payload = [
self.obses[self.last_save:self.idx],
self.next_obses[self.last_save:self.idx],
self.actions[self.last_save:self.idx],
self.rewards[self.last_save:self.idx],
self.dones[self.last_save:self.idx]
]
self.last_save = self.idx
torch.save(payload, path)
def load(self, save_dir):
chunks = os.listdir(save_dir)
chucks = sorted(chunks, key=lambda x: int(x.split('_')[0]))
for chunk in chucks:
start, end = [int(x) for x in chunk.split('.')[0].split('_')]
path = os.path.join(save_dir, chunk)
payload = torch.load(path)
assert self.idx == start
self.obses[start:end] = payload[0]
self.next_obses[start:end] = payload[1]
self.actions[start:end] = payload[2]
self.rewards[start:end] = payload[3]
self.dones[start:end] = payload[4]
self.idx = end
from dm_control.suite.wrappers import pixels
from dm_env import specs
from collections import OrderedDict
class FrameStackDMC(pixels.Wrapper):
def __init__(self, env, n_frames = 3, render_kwargs=None, observation_key='pixels'):
super().__init__(env, pixels_only=True, render_kwargs=render_kwargs, observation_key=observation_key)
# we also transpose the values here
shape = self.observation_spec()[self._observation_key].shape
shape = (n_frames*shape[2],) + (shape[:2]) # (C,W,H)
self.dtype = self.observation_spec()[self._observation_key].dtype
pixels_spec = specs.Array(
shape=shape, dtype=self.dtype, name=self._observation_key)
self._observation_spec[observation_key] = pixels_spec
self.n_frames = n_frames
self.frames = deque([], maxlen=n_frames)
def append_frame(self, obs: np.ndarray):
self.frames.append(obs)
def reset_frames(self, obs: np.ndarray):
self.frames = deque(self.n_frames * [obs], maxlen=self.n_frames)
def get_state(self)-> np.ndarray:
frames = np.array(self.frames,dtype=self.dtype)
# stack along channels
state = frames.reshape(-1, *frames.shape[2:]) # shape (N*C,W,H)
return state
def reset(self):
time_step = self._env.reset()
return self._add_pixel_observation(time_step, reset=True)
def _add_pixel_observation(self, time_step, reset=False):
observation = OrderedDict()
pixels = self._env.physics.render(**self._render_kwargs).transpose(2,0,1)
if reset:
self.reset_frames(pixels)
else:
self.append_frame(pixels)
observation[self._observation_key] = self.get_state()
return time_step._replace(observation=observation)
def make_MLP(in_dim: int,
out_dim: int,
hidden_dims: tuple,
hidden_act = nn.ReLU,
out_act = None) -> nn.Module:
layers = []
if len(hidden_dims) == 0:
layers.append(nn.Linear(in_dim,out_dim))
if out_act != None:
layers.append(out_act())
return nn.Sequential(*layers)
else:
d_in = in_dim
for d_out in hidden_dims:
layers.append(nn.Linear(d_in,d_out))
layers.append(hidden_act())
d_in = d_out
layers.append(nn.Linear(d_out,out_dim))
if out_act != None:
layers.append(out_act())
return nn.Sequential(*layers)
# implement the contrastive loss used in CURL, CCFDM
def infoNCE(queries: torch.Tensor, keys: torch.Tensor, similarity, device):
# the positive key is at the same index as the query
# the other indexes are the negative keys
# q: (b,n)
# k: (b,n)
# compute the similarities
sims = similarity(queries,keys) # (b,b)
# the diagonal elements can be interpreted as positive keys
# the off diagonal as negative keys
# compute the fake labels
labels = torch.arange(sims.shape[0], dtype=torch.long).to(device)
return nn.functional.cross_entropy(sims,labels)
class NormalizedActions(gym.ActionWrapper):
def action(self, action):
low = self.action_space.low
high = self.action_space.high
action = low + (action + 1.0) * 0.5 * (high - low)
action = np.clip(action, low, high)
return action
def reverse_action(self, action):
low = self.action_space.low
high = self.action_space.high
action = 2 * (action - low) / (high - low) - 1
action = np.clip(action, low, high)
return action
def copy_params(copy_from: nn.Module, copy_to: nn.Module):
copy_to.load_state_dict(copy_from.state_dict())
def random_crop(imgs_torch: torch.Tensor, output_size):
"""
Vectorized way to do random crop using sliding windows
and picking out random ones
args:
imgs, batch images with shape (B,C,H,W)
"""
# batch size
imgs = imgs_torch.cpu().numpy()
n = imgs.shape[0]
img_size = imgs.shape[-1]
crop_max = img_size - output_size
imgs = np.transpose(imgs, (0, 2, 3, 1))
w1 = np.random.randint(0, crop_max, n)
h1 = np.random.randint(0, crop_max, n)
# creates all sliding windows combinations of size (output_size)
windows = view_as_windows(
imgs, (1, output_size, output_size, 1))[..., 0,:,:, 0]
# selects a random window for each batch element
cropped_imgs = windows[np.arange(n), w1, h1]
return torch.from_numpy(cropped_imgs)
def center_crop_image(image, output_size):
h, w = image.shape[1:]
new_h, new_w = output_size[1:]
top = (h - new_h)//2
left = (w - new_w)//2
image = image[:, top:top + new_h, left:left + new_w]
return image
def center_crop_images(image, output_size):
h, w = image.shape[2:]
new_h, new_w = output_size, output_size
top = (h - new_h)//2
left = (w - new_w)//2
image = image[:, :, top:top + new_h, left:left + new_w]
return image