-
Notifications
You must be signed in to change notification settings - Fork 1
/
Script_01-spectra_pre_processing-2-feature_engineering.R
171 lines (134 loc) · 6.78 KB
/
Script_01-spectra_pre_processing-2-feature_engineering.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
# Introduction ------------------------------------------------------------
# Code written to perform feature engineering in reflectance spectral
# curves of soil samples related to particle size (physical analysis),
# nitrogen and carbon (chemistry analysis). The samples were collected in
# soil profiles along the State of Pernambuco, Brazil.
# The predictors, or features, are derived from soil spectral signatures
# from Visible, Near-Infrared, Shortwave Infrared, and Middle Infrared.
# In this code Visible, Near-Infrared and Shortwave Infrared are considered
# one spectra, and the Middle Infrared other. In both, VNIR and MIR spectra,
# reflectance can be transformed by applying: continuum removal and
# spectral derivative of first and second orders; it means expanding the
# space of predictors.
# This code is part of Erli Pinto dos Santos thesis at
## Department of Agricultural Engineering, Universidade Federal de Viçosa,
## Brazil
## Author: Erli Pinto dos Santos
## Contact-me at: [email protected] or [email protected]
# Last update: May 31th, 2023
# Requested packages ------------------------------------------------------
# Helper packages
library(readxl) # For reading Excel files
# Dealing with data
library(dplyr) # For data wrangling
library(tibble) # A sophysticated data frame
# Spectra processing
library(hsdar) # For dealing with spectral curves
# Getting data ------------------------------------------------------------
# Importing Excel file with spectral curves
Vis_NIR_SWIR_MIR <- read_excel("./01_database/01_Vis_NIR_SWIR_MIR.xlsx")
# Creating a vector of wavelenghts for each spectral intervals
## VNIR
VNIR_SWIR_wavelenght_nm <- Vis_NIR_SWIR_MIR[18:2168] %>%
names() %>% as.numeric()
## VNIR
MIR_wavelenght_nm <- Vis_NIR_SWIR_MIR[2169:5502] %>%
names() %>% as.numeric()
# Gettin data from imported sheet and casting to matrix objects
## VNIR
spectra_VNIR_SWIR <- Vis_NIR_SWIR_MIR[18:2168] %>% as.matrix()
## MIR
spectra_MIR <- Vis_NIR_SWIR_MIR[2169:5502] %>% as.matrix()
# Creating spectral libraries for each spectral range by informing the
# wavelenght vector:
## First for VNIR
spectra_VNIR_SWIR <- speclib(spectra_VNIR_SWIR,
wavelength = VNIR_SWIR_wavelenght_nm) %>%
## Here is being applyied a mean filter with a window of size 4
noiseFiltering(method = "mean", p = 4)
## And for MIR
spectra_MIR <- speclib(spectra_MIR, wavelength = MIR_wavelenght_nm) %>%
## Here is being applyied a mean filter with a window of size 4
noiseFiltering(method = "mean", p = 4)
# Visualizing spectral curves ---------------------------------------------
# Visualizing reflectance curves in VNIR:
plot(spectra_VNIR_SWIR, main = "Reflectance: VNIR")
# And in MIR:
plot(spectra_MIR, main = "Reflectance: MIR")
# Applying continuum removal technique ------------------------------------
# Transform spectral libraries (VNIR and MIR) via continuum removal
# technique:
## VNIR
ch_ratio_VNIR_SWIR <- transformSpeclib(spectra_VNIR_SWIR, method = "ch",
out = "ratio")
## MIR
ch_ratio_MIR <- transformSpeclib(spectra_MIR, method = "ch", out = "ratio")
# Visualizing spectral curves ---------------------------------------------
## Visualizing normalized reflectance curves in VNIR:
plot(ch_ratio_VNIR_SWIR, ispec = 1, numeratepoints = FALSE,
main = "VNIR-SWIR Convex hull - Continuum line")
## And MIR:
plot(ch_ratio_MIR, ispec = 1, numeratepoints = FALSE,
main = "MIR Convex hull - Continuum line")
# Applying derivative spectra technique -----------------------------------
# Transforming spectral libraries (VNIR and MIR) via derivative spectra
# technique. Initially using first derivative:
## For VNIR spectra:
spec_1deriv_VNIR_SWIR <- derivative.speclib(spectra_VNIR_SWIR,
m = 1 # order of derivative
)
## For MIR spectra:
spec_1deriv_MIR <- derivative.speclib(spectra_MIR, m = 1)
# After for second derivative:
## For VNIR spectra:
spec_2deriv_VNIR_SWIR <- derivative.speclib(spectra_VNIR_SWIR,
m = 2 # order of derivative
)
## For MIR spectra:
spec_2deriv_MIR <- derivative.speclib(spectra_MIR, m = 2)
# Visualizing spectral curves ---------------------------------------------
# Visualizing derivative of the reflectance curves
## First derivative of VNIR reflectance:
plot(spec_1deriv_VNIR_SWIR, FUN = 1, main = "VNIR-SWIR First derivation")
## First derivative of MIR reflectance:
plot(spec_1deriv_MIR, FUN = 1, main = "MIR First derivation")
## Second derivative of VNIR reflectance:
plot(spec_2deriv_VNIR_SWIR, FUN = 1, main = "VNIR-SWIR Second derivation")
## Second derivative of MIR reflectance:
plot(spec_2deriv_MIR, FUN = 1, main = "MIR Second derivation")
# Gathering data ----------------------------------------------------------
# Vis-NIR-SWIR
VNIR_SWIR_ch <- as_tibble(spectra(ch_ratio_VNIR_SWIR)) %>%
rename_with(function(x) paste("ch_",VNIR_SWIR_wavelenght_nm,"_nm", sep = ""),
starts_with("V"))
VNIR_SWIR_std <- as_tibble(spectra(spec_1deriv_VNIR_SWIR)) %>%
rename_with(function(x) paste("std_",VNIR_SWIR_wavelenght_nm ,"_nm", sep = ""),
starts_with("V"))
VNIR_SWIR_scd <- as_tibble(spectra(spec_2deriv_VNIR_SWIR)) %>%
rename_with(function(x) paste("scd_",VNIR_SWIR_wavelenght_nm ,"_nm", sep = ""),
starts_with("V"))
VNIR_SWIR <- as_tibble(spectra(spectra_VNIR_SWIR)) %>%
rename_with(function(x) paste("p_",VNIR_SWIR_wavelenght_nm ,"_nm"),
starts_with("V"))
Vis_NIR_SWIR <- bind_cols(Vis_NIR_SWIR_MIR[1:17], VNIR_SWIR, VNIR_SWIR_ch,
VNIR_SWIR_std, VNIR_SWIR_scd)
remove(VNIR_SWIR_ch, VNIR_SWIR_std, VNIR_SWIR_scd, VNIR_SWIR)
# MIR
MIR_ch <- as_tibble(spectra(ch_ratio_MIR)) %>%
rename_with(function(x) paste("ch_",MIR_wavelenght_nm,"_nm", sep = ""),
starts_with("V"))
MIR_std <- as_tibble(spectra(spec_1deriv_MIR)) %>%
rename_with(function(x) paste("std_",MIR_wavelenght_nm ,"_nm", sep = ""),
starts_with("V"))
MIR_scd <- as_tibble(spectra(spec_2deriv_MIR)) %>%
rename_with(function(x) paste("scd_",MIR_wavelenght_nm ,"_nm", sep = ""),
starts_with("V"))
MIR <- as_tibble(spectra(spectra_MIR)) %>%
rename_with(function(x) paste("p_",MIR_wavelenght_nm ,"_nm"), starts_with("V"))
MIR <- bind_cols(Vis_NIR_SWIR_MIR[1:17], MIR, MIR_ch, MIR_std, MIR_scd)
remove(MIR_ch, MIR_std, MIR_scd)
# Exporting data ----------------------------------------------------------
#write_xlsx(Vis_NIR_SWIR, "./01_database/02_Vis_NIR_SWIR.xlsx", col_names = T)
#write_xlsx(MIR, "./01_database/03_MIR.xlsx",col_names = T)
save(Vis_NIR_SWIR, file = "./01_database/02_Vis_NIR_SWIR.RData")
save(MIR, file ="./01_database/03_MIR.RData")