forked from fizx/libbow-osx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
svm_al.c
901 lines (766 loc) · 24.5 KB
/
svm_al.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
/* Copyright (C) 1999 Greg Schohn - [email protected] */
/* ******************** svm_al.c *******************
* Active learning add-ons for SVM's. */
#include <bow/svm.h>
#define NDIM_INSPECTED 14
int dim_map(int i) {
static int map[] = {1,2,3,4,6,8,12,16,24,32,48,64,128,256};
return (map[i]);
}
/* compute the prec. recall breakeven point shifting the value of b */
double prec_recall_breakeven(double *test_evals, int *test_yvect, int n, int total_pos) {
struct di *ey;
double max;
int npos;
int i;
ey = (struct di *) malloc(sizeof(struct di)*n);
for (i=0; i<n; i++) {
ey[i].d = -1*test_evals[i]; /* -1 is to force the sort the way i want it */
ey[i].i = test_yvect[i];
}
qsort(ey,n,sizeof(struct di),di_cmp);
max = -1.0;
for (i=npos=0; i<n; i++) {
double min;
if (ey[i].i > 0) {
npos ++;
}
min = MIN(((double)npos)/(i+1), ((double)npos)/total_pos);
if (min > max) {
max = min;
}
}
free(ey);
return max;
}
struct al_test_data {
int ntest;
int ndim_sat;
int *docs_added;
int *test_yvect, *apvect, *anvect;
int *train_apvect, *train_anvect, *query_apvect, *query_anvect;
int *nsv_vect, *nbsv_vect, *time_vect, *nkce_vect;
int *npos_added, *nneg_added;
double *prb, *scores_added;
int **sv_dim_sat_vect, **train_dim_sat_vect;
double **test_scores;
bow_wv **test_docs;
};
/* the data coming in should have train data in the first (ndocs-ntrans)
* slots & the permanently unlabel-able data in the next ntrans slots */
/* no unlabeled data will be used unless svm_al_do_trans is set - if it
* is then ALL unlabeled data will be used. */
/* this fn. does active learning by selecting which docs to pass into
* the svm solver */
int al_svm_guts(bow_wv **train_docs, int *train_yvect, double *weights,
double *b, double **W, int nperm_unlabeled, int ndocs,
struct al_test_data *astd, int do_random_learning) {
int changed;
int *cur_hyp_yvect;
int dec;
int *hyp_yvect; /* for transduction */
int last_subndocs;
int nplabeled; /* # of potentially labeled */
int nleft;
int nsv;
int n_trans_correct;
int num_words;
int *old_svbitmap;
int qsize; /* query size, size of chunks to grow training set by */
struct di *train_scores, *train_cscores;
int *train_sat_vect;
int *sv_sat_vect; /* shows how many */
int sub_ndocs;
double tb;
int *tdocs; /* translation table */
double *tvals;
int i,j,k,n,nloop;
sub_ndocs = MIN(ndocs,svm_init_al_tset);
train_scores = (struct di *) malloc(sizeof(struct di)*ndocs);
tvals = (double *) malloc(sizeof(double)*ndocs);
tdocs = (int *) malloc(sizeof(int)*ndocs);
for (i=0; i<ndocs; i++) {
tdocs[i] = i;
}
/* hyp_yvect is a hack - it holds the hypotheses, but also the
* correct labels for the queried docs (so a proper vect can be
* passed to eval) */
cur_hyp_yvect = hyp_yvect = (int *) malloc(sizeof(int)*ndocs);
nplabeled = ndocs - nperm_unlabeled;
num_words = bow_num_words();
/* BEGIN LOGGING CODE */
if (astd->sv_dim_sat_vect) {
train_sat_vect = (int *) malloc(sizeof(int)*num_words);
} else {
train_sat_vect = NULL;
}
if (astd->train_dim_sat_vect) {
old_svbitmap = (int *) malloc((ndocs+7)/8);
sv_sat_vect = (int *) malloc(sizeof(int)*num_words);
} else {
old_svbitmap = NULL;//(int *) malloc((ndocs+7)/8);
sv_sat_vect = NULL;//(int *) malloc(sizeof(int)*num_words);
}
/* initialize accounting stuff */
if (sv_sat_vect) {
memset(old_svbitmap, 0, (ndocs+7)/8);
for (i=0; i<num_words; i++) {
sv_sat_vect[i] = 0.0;
}
}
if (train_sat_vect) {
for (i=0; i<num_words; i++) {
train_sat_vect[i] = 0.0;
}
}
/* END LOGGING CODE */
/* initialize... */
nsv = 0;
for (i=0; i<ndocs; i++) {
weights[i] = 0.0;
tvals[i] = 0.0;
}
qsize = svm_al_qsize;
/* select an initial set of things to classify */
/* the following is equivalent to asking the user to classify 1/2 the
* documents as positive & the other half as negative */
for (k=-1, i=0, n=sub_ndocs/2; k<2; n=sub_ndocs,k=k+2) {
for (j=0; i<n && j<nplabeled; j++) {
if (train_yvect[j] != k) {
continue;
}
{
int t;
bow_wv *twv;
t = tdocs[j];
tdocs[j] = tdocs[i];
tdocs[i] = t;
t = train_yvect[j];
train_yvect[j] = train_yvect[i];
train_yvect[i] = t;
twv = train_docs[j];
train_docs[j] = train_docs[i];
train_docs[i] = twv;
}
i++;
}
}
sub_ndocs = i;
last_subndocs = 0;
/* copy the initial yvect into hyp_yvect (for evaluate) */
for (i=0; i<sub_ndocs; i++) {
hyp_yvect[i] = train_yvect[i];
}
cur_hyp_yvect = &(hyp_yvect[sub_ndocs]);
for (i=train_yvect[0],j=1; j<sub_ndocs; j++) {
if (j != i) break;
}
if (j == i) {
bow_error("Can't active learn when all examples are from the same class!");
}
train_cscores = NULL;
dec = 0;
nleft = ndocs - sub_ndocs;
changed = 1; /* for code where transduction is done */
n_trans_correct = 0;
for (nloop=0; ;nloop++) {
struct tms t1, t2;
/* BEGIN LOGGING CODE */
/* this is done at the beginning of the loop so that the base case
(ie. after initial set) works too... */
if (astd->npos_added && astd->nneg_added) {
astd->npos_added[nloop] = 0;
astd->nneg_added[nloop] = 0;
for (i=last_subndocs; i<sub_ndocs; i++) {
if (train_yvect[i] == 1) {
astd->npos_added[nloop] ++;
} else {
astd->nneg_added[nloop] ++;
}
}
}
/* add the document indices */
if (astd->docs_added) {
for (i=last_subndocs; i<sub_ndocs; i++) {
astd->docs_added[i] = tdocs[i];
}
}
if (train_sat_vect) {
for (i=last_subndocs; i<sub_ndocs; i++) {
for (j=0; j<train_docs[i]->num_entries; j++) {
train_sat_vect[train_docs[i]->entry[j].wi] ++;
}
}
}
svm_nkc_calls = 0;
/* END LOGGING CODE */
fprintf(stderr,"\r%dth AL iteration",nloop);
times(&t1);
if (nloop==2) {
//exit(1);
}
/* the changed flag shows whether or not the theorized y's are different than
* the actual ones (if they are, retraining is done, otherwise it isn't). */
if (svm_al_do_trans) {
if (changed) {
changed = svm_trans_or_chunk(train_docs, train_yvect, cur_hyp_yvect, weights,
tvals, &tb, W, nleft+nperm_unlabeled, ndocs, &nsv);
}
} else {
changed = svm_trans_or_chunk(train_docs, train_yvect, cur_hyp_yvect, weights,
tvals, &tb, W, 0, sub_ndocs, &nsv);
}
times(&t2);
/* BEGIN LOGGING CODE */
/* a couple of accounting things that are independent of a test/validation set */
if (astd->time_vect)
astd->time_vect[nloop] = (int) (t2.tms_utime - t1.tms_utime + t2.tms_stime - t1.tms_stime);
if (astd->nsv_vect)
astd->nsv_vect[nloop] = nsv;
if (astd->nbsv_vect) {
astd->nbsv_vect[nloop] = 0;
for (j=0; j<sub_ndocs; j++) {
/* note - use svm_C because the label IS known */
if (weights[j] >= svm_C - svm_epsilon_a)
astd->nbsv_vect[nloop] ++;
}
}
if (astd->nkce_vect)
astd->nkce_vect[nloop] = svm_nkc_calls;
/* END LOGGING CODE */
/* find the next example that is closest to the hyperplane that we just found */
/* the scores need to be recalculated if any of the weights changed... */
if (changed) {
train_cscores = train_scores;
if (svm_kernel_type == 0) {
for (j=sub_ndocs,nleft=0; j<nplabeled; j++) {
train_scores[nleft].d = fabs(evaluate_model_hyperplane(*W, tb, train_docs[j]));
train_scores[nleft].i = j;
nleft ++;
}
} else {
for (j=sub_ndocs,nleft=0; j<nplabeled; j++) {
train_scores[nleft].d = fabs(evaluate_model_cache(train_docs, weights, hyp_yvect, tb, train_docs[j], nsv));
train_scores[nleft].i = j;
nleft ++;
}
}
/* BEGIN LOGGING CODE */
if (astd->train_anvect && astd->train_apvect) {
double out;
astd->train_anvect[nloop] = astd->train_apvect[nloop] = 0;
for (i=0; i<sub_ndocs; i++) {
if (svm_kernel_type == 0) {
out = evaluate_model_hyperplane(*W,tb,train_docs[i]);
} else {
out = evaluate_model_cache(train_docs, weights, hyp_yvect, tb, train_docs[i], nsv);
}
if (train_yvect[i]*out > 0) {
if (train_yvect[i] > 0) {
astd->train_apvect[nloop] ++;
} else {
astd->train_anvect[nloop] ++;
}
}
}
}
/* lets figure out the change in fdim saturation... */
if (sv_sat_vect) {
for (i=0; i<sub_ndocs; i++) {
if ((weights[i] == 0.0) && (GETVALID(old_svbitmap,i))) {
SETINVALID(old_svbitmap,i);
for (j=0; j<train_docs[i]->num_entries; j++) {
sv_sat_vect[train_docs[i]->entry[j].wi] --;
}
} else if ((weights[i] != 0.0) && (!GETVALID(old_svbitmap,i))) {
SETVALID(old_svbitmap,i);
for (j=0; j<train_docs[i]->num_entries; j++) {
sv_sat_vect[train_docs[i]->entry[j].wi] ++;
}
}
}
/* this could be smarter - but it would involve more arrays... */
/* update the history vector... */
for (i=0; i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] = 0;
}
for (j=0; j<num_words; j++) {
for (i=0; sv_sat_vect[j]>=dim_map(i) && i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] ++;
}
}
}
if (astd->train_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] = 0;
}
for (j=0; j<num_words; j++) {
for (i=0; train_sat_vect[j]>=dim_map(i) && i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] ++;
}
}
}
/* now lets find the accuracy... */
if (astd->prb) {
int npos;
double *test_evals = (double *) malloc(sizeof(double)*astd->ntest);
astd->anvect[nloop] = astd->apvect[nloop] = 0;
if (svm_kernel_type == 0) {
for (j=0; j<astd->ntest; j++) {
test_evals[j] = evaluate_model_hyperplane(*W, tb, astd->test_docs[j]);
}
} else {
for (j=0; j<astd->ntest; j++) {
test_evals[j] = evaluate_model(train_docs, weights, hyp_yvect,
tb, astd->test_docs[j], nsv);
}
}
if (astd->test_scores) {
for (j=0; j<astd->ntest; j++) {
astd->test_scores[nloop][j] = test_evals[j];
}
}
for (j=npos=0; j<astd->ntest; j++) {
if (astd->test_yvect[j] * test_evals[j] > 0.0) {
if (astd->test_yvect[j] == -1)
astd->anvect[nloop] ++;
else
astd->apvect[nloop] ++;
}
if (astd->test_yvect[j] > 0) {
npos ++;
}
}
if (svm_al_do_trans && (astd->apvect[nloop] == 0 || astd->anvect[nloop] == 0)) {
fprintf(stderr,"Unlikely occurence that all test (%d) examples have the same \n"
"label when classified with the current model of %d support vectors.\n"
"Unless this is expected, there is probably a bug in the program.\n"
"Please send the author ([email protected]) email (note the cmd line arguments).\n"
"The function has stopped the program so that it may be debugged, terminated"
"or continued\n", astd->ntest, nsv);
for (j=0; j<astd->ntest; j++) {
if (test_evals[j] * evaluate_model(train_docs, weights, hyp_yvect,
tb, astd->test_docs[j], nsv) < 0.0) {
fprintf(stderr, "bad hyperplane (j=%d, te[j]=%f, actual_sv=%f, actual_hyp=%f)\n",j,
evaluate_model(train_docs, weights, hyp_yvect, tb, astd->test_docs[j], nsv),
test_evals[j],evaluate_model_hyperplane(*W, tb, astd->test_docs[j]));
fflush(stderr);
kill(getpid(),SIGSTOP);
}
}
#ifdef GCSJPRC
system("echo \"rainbow did a boo-boo - stopping!\" | /usr/sbin/sendmail [email protected]");
#endif
/* if it didn't get stopped before */
if (j == astd->ntest) {
fflush(stderr);
kill(getpid(),SIGSTOP);
}
}
/* precision recall breakevens too */
astd->prb[nloop] = prec_recall_breakeven(test_evals, astd->test_yvect,
astd->ntest, npos);
free(test_evals);
}
/* END LOGGING CODE */
} else {
/* BEGIN LOGGING CODE */
/* we can use the scores that we got last time (they'll still be the same) - just
* remove the previous ones from the scores array... */
/* since nothing changed, we don't need to recalculate the test accuracy */
if (astd->prb) {
astd->apvect[nloop] = astd->apvect[nloop-1];
astd->anvect[nloop] = astd->anvect[nloop-1];
astd->prb[nloop] = astd->prb[nloop-1];
}
/* quite nasty (because of the dependency on nneg_added & npos_added) */
if (astd->train_anvect && astd->train_apvect && astd->nneg_added && astd->npos_added) {
astd->train_anvect[nloop] = astd->train_anvect[nloop-1] + astd->nneg_added[nloop];
astd->train_apvect[nloop] = astd->train_apvect[nloop-1] + astd->npos_added[nloop];
}
if (astd->train_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->train_dim_sat_vect[i][nloop] = astd->train_dim_sat_vect[i][nloop-1];
}
}
if (astd->sv_dim_sat_vect) {
for (i=0; i<astd->ndim_sat; i++) {
astd->sv_dim_sat_vect[i][nloop] = astd->sv_dim_sat_vect[i][nloop-1];
}
}
if (astd->test_scores) {
for (i=0; i<astd->ntest; i++) {
astd->test_scores[nloop][i] = astd->test_scores[nloop-1][i];
}
}
/* END LOGGING CODE */
/* this code doesn't get touched till after stuff was added */
nleft -= dec;
cur_hyp_yvect = &(cur_hyp_yvect[dec]);
train_cscores = &(train_cscores[dec]);
}
/* see if there are any indices < sub_ndocs in the score array */
for (i=0; i<nplabeled-sub_ndocs; i++) {
assert (train_cscores[i].i >= sub_ndocs);
}
if (sub_ndocs == nplabeled) {
break;
}
/* now use the scores (& possibly other things) to chose the next examples to learn */
if (nleft < qsize) {
dec = nleft;
} else {
dec = qsize;
}
/* do this even if nleft<qsize to find the min... */
if (!do_random_learning) {
get_top_n(train_cscores, nleft, dec);
}
/* this is where the termination criteria goes - right now its pretty dumb... */
/* (it would be a fn, but since bookkeeping & setting up need to go on in here
* anyway, i'm just computing it */
if ((train_cscores[0].d > 1) && (0)) {
break;
}
/* this only matters when transduction is being used (otherwise its harmless) */
changed = 0;
/* BEGIN LOGGING CODE */
if (astd->query_anvect && astd->query_apvect) {
astd->query_anvect[nloop] = astd->query_apvect[nloop] = 0;
}
/* END LOGGING CODE */
/* query "oracle" */
for (j=0; j<dec; j++) {
int t,tj;
bow_wv *twv;
tj = train_cscores[j].i;
t = tdocs[sub_ndocs+j];
tdocs[sub_ndocs+j] = tdocs[tj];
tdocs[tj] = t;
twv = train_docs[sub_ndocs+j];
train_docs[sub_ndocs+j] = train_docs[tj];
train_docs[tj] = twv;
t = train_yvect[sub_ndocs+j];
train_yvect[sub_ndocs+j] = train_yvect[tj];
train_yvect[tj] = t;
if (svm_al_do_trans) {
if ((train_yvect[sub_ndocs+j] != cur_hyp_yvect[j]) ||
(weights[sub_ndocs+j] >= svm_trans_cstar - svm_epsilon_a)) {
changed = 1;
}
}
/* BEGIN LOGGING CODE */
if (astd->query_anvect && astd->query_apvect) {
double out;
if (svm_kernel_type == 0) {
out = evaluate_model_hyperplane(*W,tb,train_docs[i]);
} else if (svm_al_do_trans) {
out = evaluate_model_cache(train_docs,weights,hyp_yvect,tb,train_docs[i],nsv);
}
if (train_yvect[sub_ndocs+j]*out > 0) {
if (train_yvect[sub_ndocs+j] > 0) {
astd->query_apvect[nloop] ++;
} else {
astd->query_anvect[nloop] ++;
}
}
}
/* END LOGGING CODE */
/* also need to swap the scores - since they will be used if the output doesn't change */
for (i=0; ; i++) {
if (train_cscores[i].i == sub_ndocs+j) {
train_cscores[i].i = tj;
break;
}
}
train_cscores[j].i = sub_ndocs+j;
if (astd->scores_added)
astd->scores_added[sub_ndocs+j] = train_cscores[j].d;
}
for (j=0; j<dec; j++) {
hyp_yvect[sub_ndocs+j] = train_yvect[sub_ndocs+j];
}
if (!changed) {
n_trans_correct ++;
}
last_subndocs = sub_ndocs;
/* calculate tvals that are necessary */
if (svm_use_smo) {
for (j=sub_ndocs; j<dec; j++) {
weights[j] = 0.0;
//tvals[j] doesn't matter
}
sub_ndocs += dec;
} else {
int n;
for (n=0; n<dec; n++) {
for (j=k=0; k<nsv; j++) {
if (weights[j] != 0.0) {
tvals[sub_ndocs] += weights[j] * train_yvect[j] *
svm_kernel_cache(train_docs[sub_ndocs],train_docs[j]);
k++;
}
}
sub_ndocs++;
}
}
/* if we no longer need W, lets ditch it (note - the loop never exits here so a
* valid W is still in place for the calling fn. */
if (!svm_use_smo && svm_kernel_type == 0) {
free(*W);
*W = NULL;
}
}
if (svm_al_do_trans) {
printf("Queried for a total of %d labels.\nSkipped %d loops w/ transduction.\n",
sub_ndocs, n_trans_correct);
}
free(hyp_yvect);
free(train_scores);
free(tvals);
if (sv_sat_vect) {
free(sv_sat_vect);
free(old_svbitmap);
}
if (train_sat_vect) {
free(train_sat_vect);
}
/* fill everything back in - depermute everything */
for (i=0; i<sub_ndocs; ) {
int t,j;
double td;
bow_wv *twv;
j = tdocs[i];
if (j == i) {
i++;
continue;
}
twv = train_docs[j];
train_docs[j] = train_docs[i];
train_docs[i] = twv;
t = train_yvect[j];
train_yvect[j] = train_yvect[i];
train_yvect[i] = t;
td = weights[j];
weights[j] = weights[i];
weights[i] = td;
tdocs[i] = tdocs[j];
tdocs[j] = j;
}
free(tdocs);
*b = tb;
return nsv;
}
/* this cuts up the training set into training & validation */
/* the data coming in has already been permutated */
/* the first docs become the test docs
* (to prevent us from having to move everything) */
int al_svm_test_wrapper(bow_wv **docs, int *yvect, double *weights, double *b,
double **W, int ntrans, int ndocs, int do_ts,
int do_random_learning, int *permute_table) {
struct al_test_data altd;
int max_iter;
int nlabeled;
int ntrain;
int nsv;
int ntest;
int tp, tn;
bow_wv **train_docs;
int *train_y;
int i,j,k;
ntrain = altd.ntest = 0;
nlabeled = ndocs - ntrans;
ntrain = nlabeled/2;
ntest = nlabeled - ntrain;
altd.ntest = ntest;
train_docs = &(docs[ntest]);
train_y = &(yvect[ntest]);
altd.test_docs = docs;
altd.test_yvect = yvect;
max_iter = ((ntrain+svm_al_qsize-1) / svm_al_qsize) + 1;
altd.apvect = (int *) malloc(sizeof(int)*max_iter);
altd.anvect = (int *) malloc(sizeof(int)*max_iter);
altd.nsv_vect = (int *) malloc(sizeof(int)*max_iter);
altd.nbsv_vect = (int *) malloc(sizeof(int)*ntrain);
altd.prb = (double *) malloc(sizeof(double)*max_iter);
altd.nkce_vect = (int *) malloc(sizeof(int)*max_iter);
altd.time_vect = (int *) malloc(sizeof(int)*max_iter);
altd.query_anvect = (int *) malloc(sizeof(int)*max_iter);
altd.query_apvect = (int *) malloc(sizeof(int)*max_iter);
altd.train_anvect = (int *) malloc(sizeof(int)*max_iter);
altd.train_apvect = (int *) malloc(sizeof(int)*max_iter);
if (do_ts) {
altd.test_scores = (double **) malloc(sizeof(double *)*max_iter);
for (i=0; i<max_iter; i++) {
altd.test_scores[i] = (double *) malloc(sizeof(double)*altd.ntest);
}
} else {
altd.test_scores = NULL;
}
altd.npos_added = (int *) malloc(sizeof(int)*max_iter+1);
altd.nneg_added = (int *) malloc(sizeof(int)*max_iter+1);
altd.docs_added = (int *) malloc(sizeof(int)*ntrain);
altd.scores_added = (double *) malloc(sizeof(double)*ntrain);
for (i=0; i<ntrain; i++) {
altd.scores_added[i] = 0.0;
}
memset(altd.apvect, -1, max_iter*sizeof(int));
memset(altd.anvect, -1, max_iter*sizeof(int));
altd.ndim_sat = NDIM_INSPECTED;
altd.sv_dim_sat_vect = (int **) malloc(NDIM_INSPECTED*sizeof(int *));
altd.train_dim_sat_vect = (int **) malloc(NDIM_INSPECTED*sizeof(int *));
for(i=0; i<NDIM_INSPECTED; i++) {
altd.sv_dim_sat_vect[i] = (int *) malloc(sizeof(int)*max_iter);
altd.train_dim_sat_vect[i] = (int *) malloc(sizeof(int)*max_iter);
}
nsv = al_svm_guts(train_docs, train_y, weights, b, W, ntrans, ntrain,
&altd, do_random_learning);
for (i=tp=tn=0; i<altd.ntest; i++) {
if (altd.test_yvect[i] == 1) {
tp ++;
} else {
tn ++;
}
}
printf("%d positive test documents, %d negative test documents.\npositive accuracy vector: ",tp,tn);
for (i=0; (altd.apvect[i]>=0) && i < max_iter; i++) {
printf(" %d", altd.apvect[i]);
}
printf("\nnegative accuracy vector: ");
for (j=0; j<i; j++) {
printf(" %d", altd.anvect[j]);
}
printf("\nprecision/recall breakeven vector: ");
for (j=0; j<i; j++) {
printf(" %f", altd.prb[j]);
}
printf("\nquery positive accuracy vector: ");
for (j=0; j<i-1; j++) {
printf(" %d",altd.query_apvect[j]);
}
printf("\nquery negative accuracy vector: ");
for (j=0; j<i-1; j++) {
printf(" %d",altd.query_anvect[j]);
}
printf("\ntrain positive accuracy vector: ");
for (j=0; j<i; j++) {
printf(" %d",altd.train_apvect[j]);
}
printf("\ntrain negative accuracy vector: ");
for (j=0; j<i; j++) {
printf(" %d",altd.train_anvect[j]);
}
printf("\nnumber of positive documents inspected: ");
for (j=0; j<i; j++) {
printf(" %d", altd.npos_added[j]);
}
printf("\nnumber of negative documents inspected: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nneg_added[j]);
}
printf("\nnumber of support vectors: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nsv_vect[j]);
}
printf("\nnumber of bounded support vectors: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nbsv_vect[j]);
}
{
int k;
int start_index= MIN(ntrain, svm_init_al_tset);
printf("\n\"Real\" document indices when added: ");
printf("0(%d",permute_table[altd.docs_added[0]]);
for (k=1; k<start_index; k++) {
printf(",%d",permute_table[altd.docs_added[k]]);
}
printf(") ");
for (j=0; j<i-1; j++) {
printf("%d(%d",j+1,permute_table[altd.docs_added[j*svm_al_qsize+start_index]]);
for (k=1; k<svm_al_qsize && k+j*svm_al_qsize+start_index<ntrain; k++) {
printf(",%d",permute_table[altd.docs_added[j*svm_al_qsize+start_index+k]]);
}
printf(") ");
}
printf("\nminimum scores of documents when added: ");
for (j=0; j<i-1; j++) {
printf(" %f", altd.scores_added[j*svm_al_qsize+svm_init_al_tset]);
}
printf("\naverage scores of documents when added: ");
for (j=0; j<i-1; j++) {
double avg = 0.0;
for (k=0; k<svm_al_qsize && k+j*svm_al_qsize+svm_init_al_tset<ntrain; k++) {
avg += altd.scores_added[j*svm_al_qsize+k+svm_init_al_tset];
}
printf(" %f", avg/k);
}
}
printf("\nrunning times: ");
for (j=0; j<i; j++) {
printf(" %d", altd.time_vect[j]);
}
printf("\nkernel_cache calls: ");
for (j=0; j<i; j++) {
printf(" %d", altd.nkce_vect[j]);
}
for (k=0; k<NDIM_INSPECTED; k++) {
/* following is only good if the 0'th # of dimensions == 1 */
int num_words = altd.train_dim_sat_vect[0][i-1];
printf("\nnumber of SV dimensions with more than %d elements (%d total dimensions): ", dim_map(k), num_words);
for (j=0; j<i; j++) {
printf(" %d", altd.sv_dim_sat_vect[k][j]);
}
}
for (k=0; k<NDIM_INSPECTED; k++) {
int num_words = altd.train_dim_sat_vect[0][i-1];
printf("\nnumber of train dimensions with more than %d elements (%d total dimensions): ", dim_map(k), num_words);
for (j=0; j<i; j++) {
printf(" %d", altd.train_dim_sat_vect[k][j]);
}
}
if (do_ts) {
printf("\nbegin score matrix:");
for (j=0; j<i; j++) {
int k;
printf("\n");
for (k=0; k<altd.ntest; k++) {
printf(" %.3f", altd.test_scores[j][k]);
}
}
printf("\nend score matrix\n");
for (i=0; i<max_iter; i++) {
free(altd.test_scores[i]);
}
free(altd.test_scores);
} else {
printf("\n");
}
for(i=0; i<NDIM_INSPECTED; i++) {
free(altd.sv_dim_sat_vect[i]);
free(altd.train_dim_sat_vect[i]);
}
free(altd.docs_added);
free(altd.scores_added);
free(altd.apvect);
free(altd.anvect);
free(altd.prb);
free(altd.nsv_vect);
free(altd.nbsv_vect);
free(altd.time_vect);
free(altd.sv_dim_sat_vect);
free(altd.train_dim_sat_vect);
free(altd.nkce_vect);
free(altd.npos_added);
free(altd.nneg_added);
free(altd.query_anvect);
free(altd.query_apvect);
free(altd.train_anvect);
free(altd.train_apvect);
return nsv;
}
int al_svm(bow_wv **docs, int *yvect, double *weights, double *b, double **W,
int ntrans, int ndocs, int do_rlearn) {
struct al_test_data altd;
bzero(&altd,sizeof(struct al_test_data));
return (al_svm_guts(docs, yvect, weights, b, W, ntrans, ndocs, &altd, do_rlearn));
}