forked from fizx/libbow-osx
-
Notifications
You must be signed in to change notification settings - Fork 0
/
nbsimple.c
279 lines (241 loc) · 9.42 KB
/
nbsimple.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
/* A simple version of Naive-Bayes classification */
/* Copyright (C) 1999 Andrew McCallum
Written by: Andrew Kachites McCallum <[email protected]>
This file is part of the Bag-Of-Words Library, `libbow'.
This library is free software; you can redistribute it and/or
modify it under the terms of the GNU Library General Public License
as published by the Free Software Foundation, version 2.
This library is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
Library General Public License for more details.
You should have received a copy of the GNU Library General Public
License along with this library; if not, write to the Free Software
Foundation, Inc., 59 Temple Place, Suite 330, Boston, MA 02111, USA */
#include <bow/libbow.h>
#include <math.h>
/* Get the total number of terms in each class; store this in
CDOC->WORD_COUNT and CDOC->NORMALIZER*/
void
bow_nbsimple_set_cdoc_word_count_from_wi2dvf_weights (bow_barrel *barrel)
{
int ci;
bow_cdoc *cdoc;
int wi, max_wi;
bow_dv *dv;
int dvi;
int num_classes = bow_barrel_num_classes (barrel);
double num_words_per_ci[num_classes];
for (ci = 0; ci < num_classes; ci++)
num_words_per_ci[ci] = 0;
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
for (wi = 0; wi < max_wi; wi++)
{
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
if (dv == NULL)
continue;
for (dvi = 0; dvi < dv->length; dvi++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs,
dv->entry[dvi].di);
ci = dv->entry[dvi].di;
assert (ci < num_classes);
num_words_per_ci[ci] += dv->entry[dvi].weight;
}
}
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
cdoc->normalizer = num_words_per_ci[ci];
cdoc->word_count = (int) rint (num_words_per_ci[ci]);
}
}
#define IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR 999.99
int
bow_nbsimple_score (bow_barrel *barrel, bow_wv *query_wv,
bow_score *bscores, int bscores_len,
int loo_class)
{
double *scores; /* will become prob(class), indexed over CI */
int ci; /* a "class index" (document index) */
int wvi; /* an index into the entries of QUERY_WV. */
int dvi; /* an index into a "document vector" */
double pr_w_given_c; /* P(w|C), prob a word is in a class */
double rescaler; /* Rescale SCORES by this after each word */
double new_score; /* a temporary holder */
int num_scores = 0; /* number of entries placed in SCORES */
int num_words_in_query = 0; /* the total number of words in the QUERY_WV */
int wi; /* a word index */
int max_wi; /* one larger than the highest WI ever used */
bow_dv *dv; /* a "document vector", list of docs */
int vocabulary_size; /* the number of words ever used */
double scores_sum; /* sum of scores for normalization at end */
bow_cdoc *cdoc; /* information about a class */
float count_w_in_c; /* the # of times a word occurs in a class */
/* This implementation only implements the bow_event_word and
bow_event_document_then_word event models. */
assert (bow_event_model != bow_event_document);
max_wi = MIN (barrel->wi2dvf->size, bow_num_words());
vocabulary_size = barrel->wi2dvf->num_words;
/* Allocate space to store scores for *all* classes (documents) */
scores = alloca (barrel->cdocs->length * sizeof (double));
/* Instead of multiplying probabilities, we will sum up
log-probabilities, (so we don't loose floating point resolution),
and then take the exponent of them to get probabilities back. */
/* Initialize the SCORES to the class prior probabilities. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
if (cdoc->prior == 0)
scores[ci] = IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR;
else
scores[ci] = log (cdoc->prior);
}
/* Get the total number of words in this query. */
num_words_in_query = 0;
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
/* Only count those words that are in the model's vocabulary. */
dv = bow_wi2dvf_dv (barrel->wi2dvf, query_wv->entry[wvi].wi);
if (dv)
num_words_in_query += query_wv->entry[wvi].count;
}
/* Set the weights of the QUERY_WV, according to the event model. */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
/* temporary fix to allow longer docs be more confident */
#if 0
if (bow_event_model == bow_event_document_then_word)
query_wv->entry[wvi].weight =
bow_event_document_then_word_document_length
* ((float)query_wv->entry[wvi].count) / num_words_in_query;
else
#endif
query_wv->entry[wvi].weight = query_wv->entry[wvi].count;
}
/* Put contribution of the words into SCORES. */
for (wvi = 0; wvi < query_wv->num_entries; wvi++)
{
/* Get information about this word. */
wi = query_wv->entry[wvi].wi;
dv = bow_wi2dvf_dv (barrel->wi2dvf, wi);
/* If the model doesn't know about this word, skip it. */
if (!dv)
continue;
rescaler = DBL_MAX;
/* Loop over all classes, putting this word's (WI's)
contribution into SCORES. */
for (ci = 0, dvi = 0; ci < barrel->cdocs->length; ci++)
{
if (scores[ci] == IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
continue;
/* Find the number of times this word occurred in class CI */
while (dvi < dv->length && dv->entry[dvi].di < ci)
dvi++;
if (dvi < dv->length && dv->entry[dvi].di == ci)
count_w_in_c = dv->entry[dvi].weight;
else
count_w_in_c = 0;
cdoc = bow_array_entry_at_index (barrel->cdocs, ci);
/* Estimate P(w|c) using Laplace smoothing */
pr_w_given_c = ((1.0 + count_w_in_c)
/ (((float) vocabulary_size) + cdoc->normalizer));
scores[ci] += query_wv->entry[wvi].weight * log (pr_w_given_c);
/* Keep track of the minimum score updated for this word. */
if (rescaler > scores[ci])
rescaler = scores[ci];
}
/* Loop over all classes, re-scaling SCORES so that they
don't get so small we loose floating point resolution.
This scaling always keeps all SCORES positive. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
/* Add to SCORES to bring them close to zero. RESCALER is
expected to often be less than zero here. */
if (scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores[ci] += -rescaler;
}
}
/* Now SCORES[] contains a (unnormalized) log-probability for each class. */
/* Rescale the SCORE one last time, this time making them all -2 or
more negative, so that exp() will work well, especially around
the higher-probability classes. */
rescaler = -DBL_MAX;
for (ci = 0; ci < barrel->cdocs->length; ci++)
if (scores[ci] > rescaler
&& scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
rescaler = scores[ci];
rescaler += 2.0;
/* RESCALER is now the maximum of the SCORES. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
if (scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores[ci] -= rescaler;
/* Use exp() on the SCORES to get probabilities from
log-probabilities. */
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
new_score = exp (scores[ci]);
/* assert (new_score > 0 && new_score < DBL_MAX - 1.0e5); */
if (scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores[ci] = new_score;
}
/* Normalize the SCORES so they all sum to one. */
scores_sum = 0;
for (ci = 0; ci < barrel->cdocs->length; ci++)
if (scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores_sum += scores[ci];
for (ci = 0; ci < barrel->cdocs->length; ci++)
if (scores[ci] != IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores[ci] /= scores_sum;
/* Return the SCORES by putting them (and the `class indices') into
SCORES in sorted order. Do it by insertion sort because the
number of scores that were requested to be returned may be much
smaller than the actually number of classes. */
num_scores = 0;
for (ci = 0; ci < barrel->cdocs->length; ci++)
{
if (scores[ci] == IMPOSSIBLE_SCORE_FOR_ZERO_CLASS_PRIOR)
scores[ci] = -DBL_MAX;
if (num_scores < bscores_len
|| bscores[num_scores-1].weight < scores[ci])
{
/* We are going to put this score and CI into SCORES
because either: (1) there is empty space in SCORES, or
(2) SCORES[CI] is larger than the smallest score there
currently. */
int dsi; /* an index into SCORES */
if (num_scores < bscores_len)
num_scores++;
dsi = num_scores - 1;
/* Shift down all the entries that are smaller than SCORES[CI] */
for (; dsi > 0 && bscores[dsi-1].weight < scores[ci]; dsi--)
bscores[dsi] = bscores[dsi-1];
/* Insert the new score */
bscores[dsi].weight = scores[ci];
bscores[dsi].di = ci;
}
}
return num_scores;
}
rainbow_method bow_method_nbsimple =
{
"nbsimple",
bow_nbsimple_set_cdoc_word_count_from_wi2dvf_weights,
NULL, /* no weight scaling function */
NULL,
bow_barrel_new_vpc_merge_then_weight,
bow_barrel_set_vpc_priors_by_counting,
bow_nbsimple_score,
bow_wv_set_weights_to_count,
NULL, /* no need for extra weight normalization */
bow_barrel_free,
NULL
};
void _register_method_nbsimple () __attribute__ ((constructor));
void _register_method_nbsimple ()
{
bow_method_register_with_name ((bow_method*)&bow_method_nbsimple,
"nbsimple",
sizeof (rainbow_method),
NULL);
}