-
Notifications
You must be signed in to change notification settings - Fork 3
/
density_ratios.py
426 lines (342 loc) · 15 KB
/
density_ratios.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
import torch
import numpy as np
from scipy import integrate
from models import utils as mutils
import torch.autograd as autograd
from torchdiffeq import odeint
from functools import partial
def get_toy_density_ratio_fn(rtol=1e-6, atol=1e-6, method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point.
"""
def ratio_fn(score_model, x, score_type):
with torch.no_grad():
def ode_func(t, y, x, score_model):
score_model.eval()
t = (torch.ones(x.size(0)) * t).to(x.device).view(-1, 1)
x = x.to(x.device)
if score_type == 'joint':
rx = score_model(x, t)[-1]
else:
rx = score_model(x, t)
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# now just a function of t
p_get_rx = partial(ode_func, x=x, score_model=score_model)
# TODO: flipped (1, eps) for toy datasets
solution = integrate.solve_ivp(p_get_rx, (eps, 1.),
np.zeros((x.shape[0],)),
method=method, rtol=rtol, atol=atol)
nfe = solution.nfev
density_ratio = solution.y[:, -1]
print("ratio computation took {} function evaluations.".format(nfe))
return density_ratio, nfe
return ratio_fn
def get_density_ratio_fn(sde, inverse_scaler, rtol=1e-6,
atol=1e-6, method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point.
NOTE: this is the one that's being used for the DDPM noise schedule!
this function is not actually used in the code.
"""
def ratio_fn(score_model, x):
with torch.no_grad():
def ode_func(t, y, x, score_model):
score_fn = mutils.get_time_score_fn(sde, score_model, train=False, continuous=True)
t = (torch.ones(x.size(0)) * t).to(x.device)
t = t.detach()
x = x.to(x.device)
rx = score_fn(x, t) # get timewise-scores only
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# now just a function of t
p_get_rx = partial(ode_func, x=x, score_model=score_model)
# TODO: flipped (eps, 1) for DDPM noise
solution = integrate.solve_ivp(p_get_rx, (1., eps),
np.zeros((x.shape[0],)) + eps,
method=method, rtol=rtol, atol=atol)
nfe = solution.nfev
density_ratio = solution.y[:, -1]
print("ratio computation took {} function evaluations.".format(nfe))
# compute "approximate" bpds. corresponds to DIRECT method in TRE paper
# (https://arxiv.org/pdf/2006.12204.pdf page 8)
shape = x.shape
N = np.prod(shape[1:])
log_qp = density_ratio
log_p = sde.prior_logp(x).cpu().detach().numpy()
assert log_qp.shape == log_p.shape
# for actual bpd evaluation
log_q = (log_qp + log_p)
print(log_qp[0:10])
print(log_p[0:10])
print('log_qp: {}'.format(log_qp.mean()))
print('log_p: {}'.format(log_p.mean()))
# compute bpd
bpd = -log_q / np.log(2)
bpd = bpd / N
# A hack to convert log-likelihoods to bits/dim
offset = 7. - inverse_scaler(-1.)
# offset = 8.
bpd = bpd + offset # (batch_size, )
return bpd, density_ratio, nfe
return ratio_fn
def get_density_ratio_fn_flow(sde, inverse_scaler, rtol=1e-6,
atol=1e-6, method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point.
NOTE: this is the one that's being used for the DDPM noise schedule!
"""
def ratio_fn(score_model, x, flow_log_det, log_det_logit):
with torch.no_grad():
def ode_func(t, y, x, score_model):
score_fn = mutils.get_time_score_fn(sde, score_model, train=False, continuous=True)
t = (torch.ones(x.size(0)) * t).to(x.device)
t = t.detach()
x = x.to(x.device)
rx = score_fn(x, t) # get timewise-scores only
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# now just a function of t
p_get_rx = partial(ode_func, x=x, score_model=score_model)
# TODO: flipped (eps, 1) for DDPM noise
solution = integrate.solve_ivp(p_get_rx, (1., eps),
np.zeros((x.shape[0],)) + eps,
method=method, rtol=rtol, atol=atol)
nfe = solution.nfev
density_ratio = solution.y[:, -1]
print("ratio computation took {} function evaluations.".format(nfe))
# compute "approximate" bpds. corresponds to DIRECT method in TRE paper
# (https://arxiv.org/pdf/2006.12204.pdf page 8)
shape = x.shape
N = np.prod(shape[1:])
log_qp = density_ratio
log_p = sde.prior_logp(x).cpu().detach().numpy()
assert log_qp.shape == log_p.shape
# for actual bpd evaluation
log_q = (log_qp + log_p)
print(log_qp[0:10])
print(log_p[0:10])
print('log_qp: {}'.format(log_qp.mean()))
print('log_p: {}'.format(log_p.mean()))
# compute bpd
# bpd = -log_q / np.log(2)
# bpd = bpd / N
# # A hack to convert log-likelihoods to bits/dim
# offset = 8. + inverse_scaler(-1.)
# bpd = bpd + offset # (batch_size, )
# compute bpd in image space: add jacobian from flow network and logit transformation
# NOTE: flow_log_det will be 0. if we invert the flow to map z back to image space
bpd = (-(log_q.sum() + flow_log_det.sum()) - log_det_logit) / (np.log(2) * np.prod(shape))
offset = 8.
bpd = bpd + offset # (1,)
return bpd, density_ratio, nfe
return ratio_fn
def get_z_interp_density_ratio_fn_flow(sde, inverse_scaler, mlp=False, rtol=1e-6,
atol=1e-6, method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point.
NOTE: this is the one that's being used for the DDPM noise schedule!
TODO: we are using this function to evaluate q(x) = MNIST, p(x) = flow trained on MNIST
"""
# print('I am in the correct DRE function!')
def ratio_fn(score_model, flow, x):
with torch.no_grad():
def ode_func(t, y, x, score_model):
score_fn = mutils.get_time_score_fn(sde, score_model, train=False, continuous=True)
n = x.size(0)
t = (torch.ones(n) * t).to(x.device)
t = t.detach()
x = x.to(x.device)
rx = score_fn(x, t) # get timewise-scores only
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# now just a function of t
batch = x.view(x.size(0), -1) if mlp else x
p_get_rx = partial(ode_func, x=batch, score_model=score_model)
# TODO: flipped (eps, 1) for DDPM noise
solution = integrate.solve_ivp(p_get_rx, (1., eps),
np.zeros((x.shape[0],)) + eps,
method=method, rtol=rtol, atol=atol)
nfe = solution.nfev
density_ratio = solution.y[:, -1]
print("ratio computation took {} function evaluations.".format(nfe))
# compute "approximate" bpds. corresponds to DIRECT method in TRE paper
# (https://arxiv.org/pdf/2006.12204.pdf page 8)
shape = x.shape
N = np.prod(shape[1:])
log_qp = density_ratio
# TODO
log_p = sde.prior_logp(flow, x).cpu().detach().numpy()
assert log_qp.shape == log_p.shape
# for actual bpd evaluation
log_q = (log_qp + log_p)
print(log_qp[0:10])
print(log_p[0:10])
print('log_qp: {}'.format(log_qp.mean()))
print('log_p: {}'.format(log_p.mean()))
####
# this is equivalent to the thing below, but preserves the array
# bpd = -(log_q) / np.log(2)
# bpd = bpd / N
# offset = 7.
# bpd = bpd + offset
####
# log_det_logit is 0 here, so we removed it
# this gives you a scalar value
bpd = (-log_q.sum()) / (np.log(2) * np.prod(shape))
offset = 7. # bc we've rescaled to [-1, 1]
bpd = bpd + offset # (1,)
return bpd, density_ratio, nfe
return ratio_fn
def get_pathwise_density_ratio_fn(sde, inverse_scaler, rtol=1e-5, atol=1e-5,
method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point. this
requires a model to have been trained via the joint objective
"""
def ratio_fn(score_model, x):
with torch.no_grad():
# TODO: this is a single possible trajectory for y(t)!
def y_func(t, x, z):
return x + t[:, None, None, None] * (z - x)
def f_y(t, x, z):
return (z - x)
# let's compute the first integral in the r(x) expression
def ode_func(t, y, x, z, score_model):
"""NOTE: y is a dummy variable here. yt refers to y(t)"""
score_fn = mutils.get_score_fn(sde, score_model, train=False,
continuous=True)
t = (torch.ones(x.size(0)) * t).to(x.device)
# TODO: make sure you have the order correct if you try this with ddpm
T = (torch.ones(x.size(0))).to(x.device) # T = 1
x = x.to(x.device)
z = z.to(x.device)
yT = z
xy = yT + t[:, None, None, None] * (x - yT)
score_x = score_fn(xy, T)[0]
rx = torch.sum(score_x * (x - yT), dim=[1, 2, 3])
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# sample a z to compute your y(t)
z = sde.prior_sampling(x.shape)
p_get_rx = partial(ode_func, x=x, z=z, score_model=score_model)
# TODO: check direction if not using VPSDE
solution = integrate.solve_ivp(p_get_rx, (1, eps),
np.zeros((x.shape[0],)), method=method,
rtol=rtol, atol=atol)
nfe = solution.nfev
term1 = solution.y[:, -1]
# now we need a second ode function for integrating in the second term
def ode_func2(t, y, x, z, score_model):
t = (torch.ones(x.size(0)) * t).to(x.device)
x = x.to(x.device)
z = z.to(x.device)
yt = y_func(t, x, z)
score_fn = mutils.get_score_fn(sde, score_model, train=False, continuous=True)
score_x, score_t = score_fn(yt, t)
rx = score_t + torch.sum(f_y(t, x, z) * score_x, dim=[1, 2, 3])
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# TODO: check direction of integration if not using VPSDE
p2_get_rx = partial(ode_func2, x=x, z=z, score_model=score_model)
solution = integrate.solve_ivp(p2_get_rx, (1, eps),
np.zeros((x.shape[0],)), method=method,
rtol=rtol, atol=atol)
term2 = solution.y[:, -1]
nfe2 = solution.nfev
print('took a total of {} function evaluations'.format(nfe + nfe2))
density_ratio = term1 + term2
# compute "approximate" bpds. corresponds to DIRECT method in TRE paper
# (https://arxiv.org/pdf/2006.12204.pdf page 8)
shape = x.shape
N = np.prod(shape[1:])
log_qp = density_ratio
log_p = sde.prior_logp(x).cpu().detach().numpy()
assert log_qp.shape == log_p.shape
log_q = (log_qp + log_p).mean()
print(log_qp[0:10])
print(log_p[0:10])
print('log_qp: {}'.format(log_qp.mean()))
print('log_p: {}'.format(log_p.mean()))
# compute bpd
bpd = -log_q / np.log(2)
bpd = bpd / N
# A hack to convert log-likelihoods to bits/dim
offset = 7. - inverse_scaler(-1.)
bpd = bpd + offset
return bpd, density_ratio, nfe
return ratio_fn
def get_z_interp_pathwise_density_ratio_fn(sde, inverse_scaler, rtol=1e-5, atol=1e-5,
method='RK45', eps=1e-5):
"""Create a function to compute the density ratios of a given point. this
requires a model to have been trained via the joint objective
"""
def ratio_fn(score_model, flow, x):
with torch.no_grad():
# TODO: this is a single possible trajectory for y(t)!
def y_func(t, x, z):
return x + t[:, None, None, None] * (z - x)
def f_y(t, x, z):
return (z - x)
# let's compute the first integral in the r(x) expression
def ode_func(t, y, x, z, score_model):
"""NOTE: y is a dummy variable here. yt refers to y(t)"""
score_fn = mutils.get_score_fn(sde, score_model, train=False,
continuous=True)
t = (torch.ones(x.size(0)) * t).to(x.device)
# TODO: make sure you have the order correct if you try this with ddpm
T = (torch.ones(x.size(0))).to(x.device) # T = 1
x = x.to(x.device)
z = z.to(x.device)
yT = z
xy = yT + t[:, None, None, None] * (x - yT)
score_x = score_fn(xy, T)[0]
rx = torch.sum(score_x * (x - yT), dim=[1, 2, 3])
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# sample a z to compute your y(t)
# TODO: do we want to sample here? we could also fix everything to 0
# z = sde.prior_sampling(x.shape)
z = torch.zeros_like(x)
p_get_rx = partial(ode_func, x=x, z=z, score_model=score_model)
# TODO: check direction if not using VPSDE
solution = integrate.solve_ivp(p_get_rx, (1, eps),
np.zeros((x.shape[0],)), method=method,
rtol=rtol, atol=atol)
nfe = solution.nfev
term1 = solution.y[:, -1]
# now we need a second ode function for integrating in the second term
def ode_func2(t, y, x, z, score_model):
t = (torch.ones(x.size(0)) * t).to(x.device)
x = x.to(x.device)
z = z.to(x.device)
yt = y_func(t, x, z)
score_fn = mutils.get_score_fn(sde, score_model, train=False, continuous=True)
score_x, score_t = score_fn(yt, t)
rx = score_t + torch.sum(f_y(t, x, z) * score_x, dim=[1, 2, 3])
rx = np.reshape(rx.detach().cpu().numpy(), -1)
return rx
# TODO: check direction of integration if not using VPSDE
p2_get_rx = partial(ode_func2, x=x, z=z, score_model=score_model)
solution = integrate.solve_ivp(p2_get_rx, (1, eps),
np.zeros((x.shape[0],)), method=method,
rtol=rtol, atol=atol)
term2 = solution.y[:, -1]
nfe2 = solution.nfev
print('took a total of {} function evaluations'.format(nfe + nfe2))
density_ratio = term1 + term2
# compute "approximate" bpds. corresponds to DIRECT method in TRE paper
# (https://arxiv.org/pdf/2006.12204.pdf page 8)
shape = x.shape
N = np.prod(shape[1:])
log_qp = density_ratio
log_p = sde.prior_logp(flow, x).cpu().detach().numpy()
assert log_qp.shape == log_p.shape
log_q = (log_qp + log_p).mean()
print(log_qp[0:10])
print(log_p[0:10])
print('log_qp: {}'.format(log_qp.mean()))
print('log_p: {}'.format(log_p.mean()))
# compute bpd
bpd = -log_q / np.log(2)
bpd = bpd / N
# A hack to convert log-likelihoods to bits/dim
offset = 7. - inverse_scaler(-1.)
bpd = bpd + offset
return bpd, density_ratio, nfe
return ratio_fn