Skip to content

Latest commit

 

History

History
57 lines (39 loc) · 2.15 KB

README.md

File metadata and controls

57 lines (39 loc) · 2.15 KB

Feiertag

Build

Feiertag is an open-source neural sequence tagging toolkit built with PyTorch.

Installation

Use the package manager pip to install feiertag.

git clone [email protected]:erip/feiertag.git
cd feiertag
pip install -e .

Usage

Feiertag supports a handful of baseline architectures and datasets with configuration handled by Hydra. An example to train an NER model on CoNLL 2003 formatted data is shown below:

feiertag-train data.train="$DATA_DIR/train.txt" data.valid="$DATA_DIR/valid.txt" data_format=conll2003 trainer.max_epochs=25 embedding.path="$EMBEDDING_DIR/glove.6B.50d.txt" model=bilstm_crf data.loader.batch_size=128 embedding.freeze=false

Model training is handled by PyTorch-Lightning and kwargs passed to the pytorch_lightning.Trainer class can be provided by Hydra override syntax. For example, to emulate pl.Trainer(gpus='0,1', deterministic=True), use the following syntax:

feiertag-train ... +trainer.gpus="0,1" +trainer.deterministic=true

Managing Experiments

By default, Hydra maintains an output directory structure to separate runs. Similarly, PyTorch-Lightning logs checkpoints, hyperparameters, and Tensorboard logfiles with the following structure:

outputs
└── 2020-12-02
    └── 18-02-11
        ├── lightning_logs
        │   └── version_0
        │       ├── checkpoints
        │       │   └── epoch=1.ckpt
        │       ├── events.out.tfevents.1606950132.erip.16601.0
        │       └── hparams.yaml
        └── train.log

To view the above experiment in tensorboard, issue tensorboard --logdir outputs/2020-12-02/18-02-11/lightning_logs/version_0/.

Contributing

Pull requests are welcome. For major changes, please open an issue first to discuss what you would like to change.

Please make sure to update tests as appropriate.

License

MIT