diff --git a/dbgpt/_version.py b/dbgpt/_version.py index d76c3bc53..c484a1d8b 100644 --- a/dbgpt/_version.py +++ b/dbgpt/_version.py @@ -1 +1 @@ -version = "0.5.5" +version = "0.5.6" diff --git a/dbgpt/app/knowledge/service.py b/dbgpt/app/knowledge/service.py index 39d6d91b7..8ea5f27a6 100644 --- a/dbgpt/app/knowledge/service.py +++ b/dbgpt/app/knowledge/service.py @@ -247,11 +247,13 @@ def sync_knowledge_document(self, space_name, sync_request: DocumentSyncRequest) doc_ids = sync_request.doc_ids self.model_name = sync_request.model_name or CFG.LLM_MODEL for doc_id in doc_ids: - query = KnowledgeDocumentEntity( - id=doc_id, - space=space_name, - ) - doc = knowledge_document_dao.get_knowledge_documents(query)[0] + query = KnowledgeDocumentEntity(id=doc_id) + docs = knowledge_document_dao.get_documents(query) + if len(docs) == 0: + raise Exception( + f"there are document called, doc_id: {sync_request.doc_id}" + ) + doc = docs[0] if ( doc.status == SyncStatus.RUNNING.name or doc.status == SyncStatus.FINISHED.name diff --git a/dbgpt/storage/vector_store/base.py b/dbgpt/storage/vector_store/base.py index 4682f086a..b65f389a5 100644 --- a/dbgpt/storage/vector_store/base.py +++ b/dbgpt/storage/vector_store/base.py @@ -177,6 +177,36 @@ def load_document_with_limit( ) return ids + def filter_by_score_threshold( + self, chunks: List[Chunk], score_threshold: float + ) -> List[Chunk]: + """Filter chunks by score threshold. + + Args: + chunks(List[Chunks]): The chunks to filter. + score_threshold(float): The score threshold. + Return: + List[Chunks]: The filtered chunks. + """ + candidates_chunks = chunks + if score_threshold is not None: + candidates_chunks = [ + Chunk( + metadata=chunk.metadata, + content=chunk.content, + score=chunk.score, + chunk_id=str(id), + ) + for chunk in chunks + if chunk.score >= score_threshold + ] + if len(candidates_chunks) == 0: + logger.warning( + "No relevant docs were retrieved using the relevance score" + f" threshold {score_threshold}" + ) + return candidates_chunks + @abstractmethod def similar_search( self, text: str, topk: int, filters: Optional[MetadataFilters] = None diff --git a/dbgpt/storage/vector_store/chroma_store.py b/dbgpt/storage/vector_store/chroma_store.py index cde853843..28bff63c6 100644 --- a/dbgpt/storage/vector_store/chroma_store.py +++ b/dbgpt/storage/vector_store/chroma_store.py @@ -1,7 +1,7 @@ """Chroma vector store.""" import logging import os -from typing import List, Optional +from typing import Any, Dict, Iterable, List, Mapping, Optional, Union from chromadb import PersistentClient from chromadb.config import Settings @@ -17,6 +17,7 @@ logger = logging.getLogger(__name__) +CHROMA_COLLECTION_NAME = "langchain" @register_resource( _("Chroma Vector Store"), @@ -55,9 +56,11 @@ class ChromaStore(VectorStoreBase): """Chroma vector store.""" def __init__(self, vector_store_config: ChromaVectorConfig) -> None: - """Create a ChromaStore instance.""" - from langchain.vectorstores import Chroma + """Create a ChromaStore instance. + Args: + vector_store_config(ChromaVectorConfig): vector store config. + """ chroma_vector_config = vector_store_config.to_dict(exclude_none=True) chroma_path = chroma_vector_config.get( "persist_path", os.path.join(PILOT_PATH, "data") @@ -71,31 +74,35 @@ def __init__(self, vector_store_config: ChromaVectorConfig) -> None: persist_directory=self.persist_dir, anonymized_telemetry=False, ) - client = PersistentClient(path=self.persist_dir, settings=chroma_settings) + self._chroma_client = PersistentClient( + path=self.persist_dir, settings=chroma_settings + ) collection_metadata = chroma_vector_config.get("collection_metadata") or { "hnsw:space": "cosine" } - self.vector_store_client = Chroma( - persist_directory=self.persist_dir, - embedding_function=self.embeddings, - # client_settings=chroma_settings, - client=client, - collection_metadata=collection_metadata, - ) # type: ignore + self._collection = self._chroma_client.get_or_create_collection( + name=CHROMA_COLLECTION_NAME, + embedding_function=None, + metadata=collection_metadata, + ) def similar_search( self, text, topk, filters: Optional[MetadataFilters] = None ) -> List[Chunk]: """Search similar documents.""" logger.info("ChromaStore similar search") - where_filters = self.convert_metadata_filters(filters) if filters else None - lc_documents = self.vector_store_client.similarity_search( - text, topk, filter=where_filters + chroma_results = self._query( + text=text, + topk=topk, + filters=filters, ) return [ - Chunk(content=doc.page_content, metadata=doc.metadata) - for doc in lc_documents + Chunk(content=chroma_result[0], metadata=chroma_result[1] or {}, score=0.0) + for chroma_result in zip( + chroma_results["documents"][0], + chroma_results["metadatas"][0], + ) ] def similar_search_with_scores( @@ -114,19 +121,26 @@ def similar_search_with_scores( filters(MetadataFilters): metadata filters, defaults to None """ logger.info("ChromaStore similar search with scores") - where_filters = self.convert_metadata_filters(filters) if filters else None - docs_and_scores = ( - self.vector_store_client.similarity_search_with_relevance_scores( - query=text, - k=topk, - score_threshold=score_threshold, - filter=where_filters, - ) + chroma_results = self._query( + text=text, + topk=topk, + filters=filters, ) - return [ - Chunk(content=doc.page_content, metadata=doc.metadata, score=score) - for doc, score in docs_and_scores + chunks = [ + ( + Chunk( + content=chroma_result[0], + metadata=chroma_result[1] or {}, + score=chroma_result[2], + ) + ) + for chroma_result in zip( + chroma_results["documents"][0], + chroma_results["metadatas"][0], + chroma_results["distances"][0], + ) ] + return self.filter_by_score_threshold(chunks, score_threshold) def vector_name_exists(self) -> bool: """Whether vector name exists.""" @@ -138,19 +152,24 @@ def vector_name_exists(self) -> bool: files = list(filter(lambda f: f != "chroma.sqlite3", files)) return len(files) > 0 + def load_document(self, chunks: List[Chunk]) -> List[str]: """Load document to vector store.""" logger.info("ChromaStore load document") texts = [chunk.content for chunk in chunks] metadatas = [chunk.metadata for chunk in chunks] ids = [chunk.chunk_id for chunk in chunks] - self.vector_store_client.add_texts(texts=texts, metadatas=metadatas, ids=ids) + chroma_metadatas = [ + _transform_chroma_metadata(metadata) for metadata in metadatas + ] + self._add_texts(texts=texts, metadatas=chroma_metadatas, ids=ids) return ids def delete_vector_name(self, vector_name: str): """Delete vector name.""" logger.info(f"chroma vector_name:{vector_name} begin delete...") - self.vector_store_client.delete_collection() + # self.vector_store_client.delete_collection() + self._chroma_client.delete_collection(self._collection.name) self._clean_persist_folder() return True @@ -159,8 +178,7 @@ def delete_by_ids(self, ids): logger.info(f"begin delete chroma ids: {ids}") ids = ids.split(",") if len(ids) > 0: - collection = self.vector_store_client._collection - collection.delete(ids=ids) + self._collection.delete(ids=ids) def convert_metadata_filters( self, @@ -198,6 +216,65 @@ def convert_metadata_filters( where_filters[chroma_condition] = filters_list return where_filters + def _add_texts( + self, + texts: Iterable[str], + ids: List[str], + metadatas: Optional[List[Mapping[str, Union[str, int, float, bool]]]] = None, + ) -> List[str]: + """Add texts to Chroma collection. + + Args: + texts(Iterable[str]): texts. + metadatas(Optional[List[dict]]): metadatas. + ids(Optional[List[str]]): ids. + Returns: + List[str]: ids. + """ + embeddings = None + texts = list(texts) + if self.embeddings is not None: + embeddings = self.embeddings.embed_documents(texts) + if metadatas: + try: + self._collection.upsert( + metadatas=metadatas, + embeddings=embeddings, # type: ignore + documents=texts, + ids=ids, + ) + except ValueError as e: + logger.error(f"Error upsert chromadb with metadata: {e}") + else: + self._collection.upsert( + embeddings=embeddings, # type: ignore + documents=texts, + ids=ids, + ) + return ids + + def _query(self, text: str, topk: int, filters: Optional[MetadataFilters] = None): + """Query Chroma collection. + + Args: + text(str): query text. + topk(int): topk. + filters(MetadataFilters): metadata filters. + Returns: + dict: query result. + """ + if not text: + return {} + where_filters = self.convert_metadata_filters(filters) if filters else None + if self.embeddings is None: + raise ValueError("Chroma Embeddings is None") + query_embedding = self.embeddings.embed_query(text) + return self._collection.query( + query_embeddings=query_embedding, + n_results=topk, + where=where_filters, + ) + def _clean_persist_folder(self): """Clean persist folder.""" for root, dirs, files in os.walk(self.persist_dir, topdown=False): @@ -230,3 +307,14 @@ def _convert_chroma_filter_operator(operator: str) -> str: return "$lte" else: raise ValueError(f"Chroma Where operator {operator} not supported") + + +def _transform_chroma_metadata( + metadata: Dict[str, Any] +) -> Mapping[str, str | int | float | bool]: + """Transform metadata to Chroma metadata.""" + transformed = {} + for key, value in metadata.items(): + if isinstance(value, (str, int, float, bool)): + transformed[key] = value + return transformed diff --git a/dbgpt/storage/vector_store/pgvector_store.py b/dbgpt/storage/vector_store/pgvector_store.py index cb9728e49..0f56fbe03 100644 --- a/dbgpt/storage/vector_store/pgvector_store.py +++ b/dbgpt/storage/vector_store/pgvector_store.py @@ -66,7 +66,7 @@ def __init__(self, vector_store_config: PGVectorConfig) -> None: embedding_function=self.embeddings, collection_name=self.collection_name, connection_string=self.connection_string, - ) + ) # mypy: ignore def similar_search( self, text: str, topk: int, filters: Optional[MetadataFilters] = None diff --git a/setup.py b/setup.py index 397795db7..6131108df 100644 --- a/setup.py +++ b/setup.py @@ -19,7 +19,7 @@ IS_DEV_MODE = os.getenv("IS_DEV_MODE", "true").lower() == "true" # If you modify the version, please modify the version in the following files: # dbgpt/_version.py -DB_GPT_VERSION = os.getenv("DB_GPT_VERSION", "0.5.5") +DB_GPT_VERSION = os.getenv("DB_GPT_VERSION", "0.5.6") BUILD_NO_CACHE = os.getenv("BUILD_NO_CACHE", "true").lower() == "true" LLAMA_CPP_GPU_ACCELERATION = ( @@ -499,7 +499,6 @@ def knowledge_requires(): pip install "dbgpt[rag]" """ setup_spec.extras["rag"] = setup_spec.extras["vstore"] + [ - "langchain>=0.0.286", "spacy>=3.7", "markdown", "bs4",