-
Notifications
You must be signed in to change notification settings - Fork 4
/
model.py
130 lines (98 loc) · 3.8 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
import torch
import torch.nn as nn
from torch.nn import functional as F
import torch_directml
from config import config
dml = torch_directml.device()
torch.device(dml)
stoi = {ch: i for i, ch in enumerate(config.chars)}
itos = {i: ch for i, ch in enumerate(config.chars)}
def encode(x):
return [stoi[ch] for ch in x]
def decode(x):
return ''.join([itos[ch] for ch in x])
class Head(nn.Module):
def __init__(self, head_size):
super().__init__()
self.key = nn.Linear(config.n_embd, head_size, bias=False)
self.query = nn.Linear(config.n_embd, head_size, bias=False)
self.value = nn.Linear(config.n_embd, head_size, bias=False)
self.register_buffer('tril', torch.tril(torch.ones(config.block_size, config.block_size)))
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
B, T, C = x.shape
k = self.key(x)
q = self.query(x)
wei = q @ k.transpose(-2, -1) * C ** -0.5
wei = wei.masked_fill(self.tril[:T, :T] == 0, float('-inf'))
wei = F.softmax(wei, dim=-1)
wei = self.dropout(wei)
v = self.value(x)
out = wei @ v
return out
class MultiHeadAttention(nn.Module):
def __init__(self, num_heads, head_size):
super().__init__()
self.heads = nn.ModuleList([Head(head_size) for _ in range(num_heads)]).to(dml)
self.proj = nn.Linear(config.n_embd, config.n_embd)
self.dropout = nn.Dropout(config.dropout)
def forward(self, x):
out = torch.cat([head(x) for head in self.heads], dim=-1)
out = self.proj(out)
out = self.dropout(out)
return out
class FeedForward(nn.Module):
def __init__(self):
super().__init__()
self.net = nn.Sequential(
nn.Linear(config.n_embd, 4 * config.n_embd),
nn.ReLU(),
nn.Linear(4 * config.n_embd, config.n_embd),
nn.Dropout(config.dropout)
)
def forward(self, x):
return self.net(x)
class Block(nn.Module):
def __init__(self):
super().__init__()
head_size = config.n_embd // config.n_head
self.sa = MultiHeadAttention(config.n_head, head_size)
self.ffwd = FeedForward()
self.ln1 = nn.LayerNorm(config.n_embd)
self.ln2 = nn.LayerNorm(config.n_embd)
def forward(self, x):
x = x + self.sa(self.ln1(x))
x = x + self.ffwd(self.ln2(x))
return x
class BigramLanguageModel(nn.Module):
def __init__(self):
super().__init__()
self.token_embedding_table = nn.Embedding(config.vocab_size, config.n_embd)
self.position_embedding_table = nn.Embedding(config.block_size, config.n_embd)
self.blocks = nn.Sequential(*[Block() for _ in range(config.n_layer)])
self.ln_f = nn.LayerNorm(config.n_embd)
self.lm_head = nn.Linear(config.n_embd, config.vocab_size)
def forward(self, idx, targets=None):
B, T = idx.shape
tok_emb = self.token_embedding_table(idx)
pos_emb = self.position_embedding_table(torch.arange(T, device=dml))
x = tok_emb + pos_emb
x = self.blocks(x)
x = self.ln_f(x)
logits = self.lm_head(x)
loss = None
if targets is not None:
B, T, C = logits.shape
logits = logits.view(B * T, C)
targets = targets.view(B * T)
loss = F.cross_entropy(logits, targets)
return logits, loss
def generate(self, idx, max_new_tokens):
for _ in range(max_new_tokens):
idx_cond = idx[:, -config.block_size:]
logits, loss = self(idx_cond)
logits = logits[:, -1, :]
probs = F.softmax(logits, dim=-1)
idx_next = torch.multinomial(probs, num_samples=1)
idx = torch.cat([idx, idx_next], dim=1)
return idx