forked from suragnair/alpha-zero-general
-
Notifications
You must be signed in to change notification settings - Fork 2
/
GoMCTS.py
238 lines (180 loc) · 8.25 KB
/
GoMCTS.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
import math
import numpy as np
import time
try:
from .go.GoGame import display
except:
try:
from alphabrain.go.GoGame import display
except:
from go.GoGame import display
class MCTS():
"""
This class handles the MCTS tree.
"""
def __init__(self, game, nnet, args):
self.game = game
self.nnet = nnet
self.args = args
self.Qsa = {} # stores Q values for s,a (as defined in the paper)
self.Nsa = {} # stores #times edge s,a was visited
self.Ns = {} # stores #times board s was visited
self.Ps = {} # stores initial policy (returned by neural net)
self.smartSimNum=10*(self.game.getBoardSize()[0]**2)
self.Es = {} # stores game.getGameEnded ended for board s
self.Vs = {} # stores game.getValidMoves for board s
def getActionProb(self, canonicalBoard, temp=1):
"""
This function performs numMCTSSims simulations of MCTS starting from
canonicalBoard.
Returns:
probs: a policy vector where the probability of the ith action is
proportional to Nsa[(s,a)]**(1./temp)
"""
# display(canonicalBoard)
#print('current sim numbers:{}'.format(max(self.args.numMCTSSims,self.smartSimNum)))
for i in range(max(self.args.numMCTSSims,self.smartSimNum)):
self.search(canonicalBoard)
s = self.game.stringRepresentation(canonicalBoard)
counts = np.array([self.Nsa[(s,a)] if (s,a) in self.Nsa else 0 for a in range(self.game.getActionSize())])
valids=self.game.getValidMoves(canonicalBoard,player=1)
self.smartSimNum=10*(np.count_nonzero(valids))
if np.sum(counts)==0:
counts=valids
else:
counts*=valids
if temp==0:
bestA = np.argmax(counts)
try:
assert(valids[bestA]!=0)
except:
print("temp=0, assert valids[bestA]!=0 !!!")
print("current valids:",valids)
flag_Qsa=False
flag_Nsa=False
if s in self.Ps:
print("s in p! Which measn it's been visited, has the probability of each action",self.Ps[s])
for _ in range(self.game.getActionSize()):
if (s,_) in self.Nsa:
print(_,"in Nsa! which measn its value is calculated to ",self.Nsa[(s,_)])
else:
flag_Nsa=True
print(_,"no Nsa value, set 0 by default in counts=[...]!")
if (s,_) in self.Qsa:
print(_,"in! Qsa with value:",self.Qsa[(s,_)])
else:
flag_Qsa=True
print(_,"no Qsa value")
if flag_Nsa and flag_Qsa:
print("no nsa, no qsa")
if flag_Nsa and not flag_Qsa:
print("no nsa, has qsa")
if not flag_Nsa and flag_Qsa:
print("has nsa, no qsa")
print(counts)
probs = [0 for i in range(len(counts))]
probs[bestA]=1
for _ in range(self.game.getActionSize()):
if probs[_]>0:
assert(valids[_]>0)
return probs
counts = [x**(1./temp) for x in counts]
probs = [x/float(sum(counts)) for x in counts]
for _ in range(self.game.getActionSize()):
if probs[_]>0:
assert(valids[_]>0)
return probs*valids
def search(self, canonicalBoard):
"""
This function performs one iteration of MCTS. It is recursively called
till a leaf node is found. The action chosen at each node is one that
has the maximum upper confidence bound as in the paper.
Once a leaf node is found, the neural network is called to return an
initial policy P and a value v for the state. This value is propogated
up the search path. In case the leaf node is a terminal state, the
outcome is propogated up the search path. The values of Ns, Nsa, Qsa are
updated.
NOTE: the return values are the negative of the value of the current
state. This is done since v is in [-1,1] and if v is the value of a
state for the current player, then its value is -v for the other player.
Returns:
v: the negative of the value of the current canonicalBoard
"""
# print("doing mcts on board:")
# display(canonicalBoard)
gameEnd=self.game.getGameEnded(canonicalBoard, 1)
if gameEnd!=0:
return -gameEnd
s = self.game.stringRepresentation(canonicalBoard)
if s not in self.Ps:
# print("leaf node")
self.Ps[s], v = self.nnet.predict(canonicalBoard.pieces)
valids = self.game.getValidMoves(canonicalBoard, 1)
self.Ps[s] = self.Ps[s]*valids # masking invalid moves
sum_Ps_s = np.sum(self.Ps[s])
if sum_Ps_s > 0:
self.Ps[s] /= sum_Ps_s # renormalize
else:
# if all valid moves were masked make all valid moves equally probable
# NB! All valid moves may be masked if either your NNet architecture is insufficient or you've get overfitting or something else.
# If you have got dozens or hundreds of these messages you should pay attention to your NNet and/or training process.
print("All valid moves were masked, do workaround.")
self.Ps[s] = self.Ps[s] + valids
self.Ps[s] /= np.sum(self.Ps[s])
self.Vs[s] = valids
self.Ns[s] = 0
return -v
valids = self.Vs[s]
cur_best = -float('inf')
best_act = -1
# pick the action with the highest upper confidence bound
for a in range(self.game.getActionSize()):
if valids[a]!=0:
if (s,a) in self.Qsa and self.Qsa[(s,a)]!=None:
u = self.Qsa[(s,a)] + self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s])/(1+self.Nsa[(s,a)])
else:
u = self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s]) # Q = 0 ?
if u > cur_best:
cur_best = u
best_act = a
a = best_act
assert(valids[a]!=0)
# print("in MCTS.search, need next search, shifting player from 1")
try:
next_s, next_player = self.game.getNextState(canonicalBoard, 1, a)
# print("in MCTS.search, need next search, next player is {}".format(next_player))
except:
# print("###############在search内部节点出现错误:###########")
#display(canonicalBoard)
# print("action:{},valids:{},Vs:{}".format(a,valids,self.Vs[s]))
valids=self.game.getValidMoves(canonicalBoard,1)
self.Vs[s]=valids
cur_best = -float('inf')
best_act = -1
# pick the action with the highest upper confidence bound
for a in range(self.game.getActionSize()):
if valids[a]!=0:
if (s,a) in self.Qsa and self.Qsa[(s,a)]!=None:
u = self.Qsa[(s,a)] + self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s])/(1+self.Nsa[(s,a)])
else:
u = self.args.cpuct*self.Ps[s][a]*math.sqrt(self.Ns[s]) # Q = 0 ?
if u > cur_best:
cur_best = u
best_act = a
a = best_act
# print("recalculate the valids vector:{} ".format(valids))
try:
next_s, next_player = self.game.getNextState(canonicalBoard, 1, a)
except:
return
next_s = self.game.getCanonicalForm(next_s, next_player)
v = self.search(next_s)
if (s,a) in self.Qsa:
assert(valids[a]!=0)
self.Qsa[(s,a)] = (self.Nsa[(s,a)]*self.Qsa[(s,a)] + v)/(self.Nsa[(s,a)]+1)
self.Nsa[(s,a)] += 1
else:
self.Qsa[(s,a)] = v
self.Nsa[(s,a)] = 1
self.Ns[s] += 1
return -v