-
Notifications
You must be signed in to change notification settings - Fork 3
/
sfm_utils.py
513 lines (441 loc) · 17.3 KB
/
sfm_utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
import numpy as np
import os
import scipy.misc
from scipy.optimize import least_squares
import math
from copy import deepcopy
from triangulation import *
# A class that stores information about multiple views of the scene
class Frame:
def __init__(self, matches, focal_length, F, im_width, im_height):
self.focal_length = focal_length
self.im_height = im_height
self.im_width = im_width
self.matches = matches
self.N = matches.shape[0]
self.match_idx = np.array([np.arange(self.N),
np.arange(self.N, 2 * self.N)])
self.match_points = np.vstack((matches[:,:2], matches[:,2:]))
self.K = np.eye(3)
self.K[0,0] = self.K[1,1] = focal_length
self.E = self.K.T.dot(F).dot(self.K)
self.T = estimate_RT_from_E(self.E, matches.reshape((-1,2,2)), self.K)
self.motion = np.zeros((2,3,4))
self.motion[0,:,:-1] = np.eye(3)
self.motion[1,:,:] = self.T
self.structure = triangulate(self)
'''
NEG_ONES
Arguments:
size - the dimensions of a tensor given as a tuple or array
dtype - the numpy type of the tensor
Returns:
neg_ones - similar to np.zeros or np.ones, but with -1
'''
def neg_ones(size, dtype = np.int16):
return -1 * np.ones(size, dtype = dtype)
'''
TRIANGULATE
Arguments:
frame - information about multiple views of the scene
Returns:
structure - the 3D points of the scene
'''
def triangulate(frame):
num_cameras, num_points = frame.match_idx.shape
structure = np.zeros((num_points,3))
all_camera_matrices = np.zeros((num_cameras, 3, 4))
for i in xrange(num_cameras):
all_camera_matrices[i,:,:] = frame.K.dot(frame.motion[i,:,:])
for i in xrange(num_points):
valid_cameras = np.where(frame.match_idx[:,i] >= 0)[0]
camera_matrices = all_camera_matrices[valid_cameras,:,:]
x = np.zeros((len(valid_cameras), 2))
for ctr, c in enumerate(valid_cameras):
x[ctr, :] = frame.match_points[frame.match_idx[c, i],:]
structure[i,:] = nonlinear_estimate_3d_point(x, camera_matrices)
return structure
'''
ROTATION_MATRIX_TO_ANGLE_AXIS
Arguments:
R - a rotation matrix
Returns:
angle_axis - the angle axis representation of the rotation
'''
def rotation_matrix_to_angle_axis(R):
angle_axis = np.array([0.0]*3)
angle_axis[0] = R[2, 1] - R[1, 2]
angle_axis[1] = R[0, 2] - R[2, 0]
angle_axis[2] = R[1, 0] - R[0, 1]
cos_theta = min(max((R[0,0]+R[1,1]+R[2,2] - 1.0) / 2.0, -1.0), 1.0)
sin_theta = min(np.sqrt((angle_axis**2).sum())/2, 1.0);
theta = math.atan2(sin_theta, cos_theta)
k_threshold = 1e-12
if ((sin_theta > k_threshold) or (sin_theta < -k_threshold)):
r = theta / (2.0 * sin_theta)
angle_axis = angle_axis * r
return angle_axis
if cos_theta > 0:
angle_axis = angle_axis / 2
return angle_axis
inv_one_minus_cos_theta = 1.0 / (1.0 - cos_theta)
for i in xrange(3):
angle_axis[i] = theta * math.sqrt((R[i,i] - cos_theta)
* inv_one_minus_cos_theta)
if((sin_theta < 0 and angle_axis[i] > 0) or
(sin_theta > 0 and angle_axis[i] < 0)):
angle_axis[i] *= -1
return angle_axis
'''
ROTATION_MATRIX_TO_ANGLE_AXIS
Arguments:
angle_axis - the angle axis representation of the rotation
Returns:
R - the corresponding rotation matrix
'''
def angle_axis_to_rotation_matrix(angle_axis):
theta2 = np.dot(angle_axis, angle_axis)
R = np.zeros((3,3))
if theta2 > 0:
theta = np.sqrt(theta2)
wx, wy, wz = tuple(angle_axis / theta)
cos_theta = math.cos(theta)
sin_theta = math.sin(theta)
R[0, 0] = cos_theta + wx * wx * (1 - cos_theta)
R[1, 0] = wz * sin_theta + wx * wy * (1 - cos_theta)
R[2, 0] = -wy * sin_theta + wx * wz * (1 - cos_theta)
R[0, 1] = wx * wy * (1 - cos_theta) - wz * sin_theta;
R[1, 1] = cos_theta + wy * wy * (1 - cos_theta);
R[2, 1] = wx * sin_theta + wy * wz * (1 - cos_theta);
R[0, 2] = wy * sin_theta + wx * wz * (1 - cos_theta);
R[1, 2] = -wx * sin_theta + wy * wz * (1 - cos_theta);
R[2, 2] = cos_theta + wz * wz * (1 - cos_theta);
else:
# At zero, we switch to using the first order Taylor expansion.
R[0, 0] = 1;
R[1, 0] = -angle_axis[2];
R[2, 0] = angle_axis[1];
R[0, 1] = angle_axis[2];
R[1, 1] = 1;
R[2, 1] = -angle_axis[0];
R[0, 2] = -angle_axis[1];
R[1, 2] = angle_axis[0];
R[2, 2] = 1;
return R
'''
CROSS_PRODUCT_MAT
Arguments:
a - a 3x1 vector
Returns:
m - the corresponding cross-product matrix [a]_x
'''
def cross_product_mat(a):
m = np.zeros((3,3))
m[1,0] = a[2]
m[0,1] = -a[2]
m[2,0] = -a[1]
m[0,2] = a[1]
m[2,1] = a[0]
m[1,2] = -a[0]
return m
'''
ANGLE_AXIS_ROTATE
Arguments:
angle_axis - the angle axis representation of the rotation
pt - a matrix containing points
Returns:
new_pts - a matrix containing the points after the rotation is applied
'''
def angle_axis_rotate(angle_axis, pt):
aa = angle_axis[:3].reshape((1,3))
theta2 = aa.dot(aa.T)[0,0]
if theta2 > 0:
theta = np.sqrt(theta2)
w = aa / theta
cos_theta = math.cos(theta)
sin_theta = math.sin(theta)
w_cross_pt = cross_product_mat(w[0]).dot(pt)
w_dot_pt = w.dot(pt)
result = pt * cos_theta + w_cross_pt * sin_theta + (w.T * (1 - cos_theta)).dot(w_dot_pt)
else:
w_cross_pt = cross_product_mat(aa[0,:]).dot(pt)
result = pt + w_cross_pt
return result
'''
REPROJECTION_ERROR_MOT_STR
Arguments:
match_idx - a MxN matrix corresponding to what indices of the match_points
are visible in each of the M cameras
match_points - the pixel locations in the image
f - the focal length
px - the principal component in the x direction
py - the principal component in the y direction
motion - the camera's motion tensor
structure - the current 3D point estimate of the scene
Returns:
errors - the reprojection error vector
'''
def reprojection_error_mot_str(match_idx, match_points, f, px, py, motion, structure):
N = match_idx.shape[0]
errors = None
for i in xrange(N):
valid_pts = match_idx[i,:] >= 0
valid_idx = match_idx[i, valid_pts]
RP = angle_axis_rotate(motion[i, :, 0], structure[valid_pts,:].T)
TRX = RP[0, :] + motion[i, 0, 1]
TRY = RP[1, :] + motion[i, 1, 1]
TRZ = RP[2, :] + motion[i, 2, 1]
TRXoZ = TRX / TRZ
TRYoZ = TRY / TRZ
x = f * TRXoZ + px
y = f * TRYoZ + py
ox = match_points[valid_idx, 0]
oy = match_points[valid_idx, 1]
if errors is None:
errors = np.vstack((x-ox, y-oy))
else:
errors = np.hstack((errors, np.vstack((x-ox, y-oy))))
return errors.flatten()
'''
REPROJECTION_ERROR_MOT_STR_OPT
Arguments:
mot_str - the motion and structure matrices flattened into one vector
this allows us to use the builtin nonlinear optimization methods
match_idx - a MxN matrix corresponding to what indices of the match_points
are visible in each of the M cameras
match_points - the pixel locations in the image
f - the focal length
px - the principal component in the x direction
py - the principal component in the y direction
Returns:
errors - the reprojection error vector
'''
def reprojection_error_mot_str_opt(mot_str, match_idx, match_points, f, px, py):
num_cameras = match_idx.shape[0]
cut = 3 * 2 * num_cameras
structure = mot_str[cut:].reshape((-1,3))
motion = mot_str[:cut].reshape((-1,3,2))
error = reprojection_error_mot_str(match_idx, match_points, f, px, py, motion, structure)
return error
'''
BUNDLE_ADJUSTMENT
Arguments:
frame - the information about multiple views of the scene
Returns:
Nothing; updates the motion and structure information
'''
def bundle_adjustment(frame):
num_cameras = frame.motion.shape[0]
motion_angle_axis = np.zeros((num_cameras, 3, 2))
for i in xrange(num_cameras):
motion_angle_axis[i, :, 0] = rotation_matrix_to_angle_axis(
frame.motion[i,:, :-1])
motion_angle_axis[i, :, 1] = frame.motion[i, :, -1]
px = 0
py = 0
errors = reprojection_error_mot_str(frame.match_idx, frame.match_points, frame.focal_length, px, py, motion_angle_axis, frame.structure)
vec = least_squares(reprojection_error_mot_str_opt, np.hstack((motion_angle_axis.flatten(), frame.structure.flatten())),
args=(frame.match_idx, frame.match_points, frame.focal_length, px, py), method='lm')
cut = 3 * 2 * num_cameras
opt_val = vec['x']
frame.structure = opt_val[cut:].reshape((-1,3))
motion_angle_axis = opt_val[:cut].reshape((-1, 3, 2))
for i in xrange(num_cameras):
frame.motion[i,:,:] = np.hstack((angle_axis_to_rotation_matrix(motion_angle_axis[i,:,0]), motion_angle_axis[i,:,1].reshape((3,1))))
'''
MULTIPLY_TRANSFORMATIONS
Arguments:
A - a matrix
B - another matrix
Returns:
M - the matrix that occurs when you rotate B by A's rotation component
and then translate by A's translation component
'''
def multiply_transformations(A, B):
return np.hstack((A[:,:3].dot(B[:,:3]), (A[:,:3].dot(B[:,-1]) + A[:,-1]).reshape((3,-1))))
'''
INVERSE
Arguments:
x - a 3x4 matrix that assumes only rotation and translation
Returns:
inv_x - the 3x4 matrix inverse of x
'''
def inverse(x):
return np.hstack((x[:3, :3].T, -x[:3, :3].T.dot(x[:3, -1]).reshape((3,-1))))
'''
TRANSFORM_POINTS
Arguments:
points_3d - 3d points listed as a 3xN matrix
Rt - the 3x4 transformation matrix
is_inverse - whether to use the inverted Rt or non-inverted
Returns:
new_points - the points after applying the Rt
'''
def transform_points(points_3d, Rt, is_inverse = False):
if is_inverse:
return Rt[:,:3].T.dot((points_3d - Rt[:,-1]).T).T
return Rt[:,:3].dot(points_3d.T).T + Rt[:,-1]
'''
ROW_INTERSECTION
Arguments:
A - a matrix
B - another matrix
Returns:
intersect - a matrix whose rows are both rows in A and B
idA - indices of these rows in A
idB - indices of these rows in B
'''
def row_intersection(A, B):
nrows, ncols = A.shape
dtype={'names':['f{}'.format(i) for i in range(ncols)],
'formats':ncols * [A.dtype]}
intersect = np.intersect1d(A.view(dtype), B.view(dtype))
intersect = intersect.view(A.dtype).reshape((-1,ncols))
idA = np.array([np.where(np.all(A==x, axis=1))[0][0] for x in intersect])
idB = np.array([np.where(np.all(B==x, axis=1))[0][0] for x in intersect])
return intersect, idA, idB
'''
ROW_SET_DIFF
Arguments:
A - a matrix
B - another matrix
Returns:
set_diff - a matrix whose rows are only in one of A or B
idA - indices of these rows in A
idB - indices of these rows in B
'''
def row_set_diff(A, B):
nrows, ncols = A.shape
dtype={'names':['f{}'.format(i) for i in range(ncols)],
'formats':ncols * [A.dtype]}
set_diff = np.setdiff1d(A.view(dtype), B.view(dtype))
set_diff = set_diff.view(A.dtype).reshape((-1,ncols))
idA = []
idB = []
for x in set_diff:
idx_in_A = np.where(np.all(A==x, axis=1))[0]
idx_in_B = np.where(np.all(B==x, axis=1))[0]
if len(idx_in_A) != 0:
idA.append(idx_in_A[0])
if len(idx_in_B) != 0:
idB.append(idx_in_B[0])
return set_diff, np.array(idA), np.array(idB)
'''
REMOVE_OUTLIERS
Arguments:
frame - the information about multiple views of the scene
threshold - a threshold for the sum square of the reprojection error
Returns:
Nothing; updated frame information (structure)
'''
def remove_outliers(frame, threshold = 10.0):
threshold *= threshold
threshold_in_degree = 2.0
threshold_in_cos = math.cos(float(threshold_in_degree) / 180 * math.pi)
for i in xrange(frame.match_idx.shape[0]):
X = frame.K.dot(transform_points(frame.structure, frame.motion[i,:,:]).T)
xy = X[:2, :] / X[2, :]
selector = np.where(frame.match_idx[i,:] >= 0)[0]
diff = xy[:, selector].T - frame.match_points[frame.match_idx[i, selector],:]
outliers = np.sum(diff**2, axis=1) > threshold
pts2keep = np.array([True] * frame.structure.shape[0])
pts2keep[selector[outliers]] = False
frame.structure = frame.structure[pts2keep, :]
frame.match_idx = frame.match_idx[:, pts2keep]
# check viewing angle
num_frames = frame.motion.shape[0]
positions = np.zeros((3, num_frames))
for i in xrange(num_frames):
Rt = frame.motion[i, : , :]
positions[:, i] = -Rt[:3, :3].T.dot(Rt[:,-1])
view_dirs = np.zeros((3, frame.structure.shape[0], num_frames))
for i in xrange(frame.match_idx.shape[0]-1):
selector = np.where(frame.match_idx[i,:] >= 0)[0]
camera_view_dirs = frame.structure[selector,:] - positions[:, i]
dir_length = np.sqrt(np.sum(camera_view_dirs ** 2))
camera_view_dirs = camera_view_dirs / dir_length
view_dirs[:, selector, i] = camera_view_dirs.T
for c1 in xrange(num_frames):
for c2 in xrange(c1,num_frames):
if c1 == c2: continue
selector1 = np.where(frame.match_idx[c1,:] >= 0)[0]
selector2 = np.where(frame.match_idx[c2,:] >= 0)[0]
selector = np.array([x for x in selector1 if x in selector2])
if len(selector) == 0:
continue
view_dirs_1 = view_dirs[:, selector, c1]
view_dirs_2 = view_dirs[:, selector, c2]
cos_angles = np.sum(view_dirs_1 * view_dirs_2, axis=0)
outliers = cos_angles > threshold_in_cos
pts2keep = np.array([True] * frame.structure.shape[0])
pts2keep[selector[outliers]] = False
frame.structure = frame.structure[pts2keep, :]
frame.match_idx = frame.match_idx[:,pts2keep]
'''
MERGE_TWO_FRAMES
Arguments:
frameA - a frame
frameB - another frame, we assume the first index of frameB corresponds to
the last camera index of frameA
length - the number of total cameras
Returns:
merged_frame - the merged information of both frames
'''
def merge_two_frames(frameA, frameB, length):
merged_frame = deepcopy(frameA)
frameB_to_A = multiply_transformations(inverse(frameA.motion[-1,:,:]), frameB.motion[0,:,:])
frameB.structure = transform_points(frameB.structure, frameB_to_A)
for i in xrange(2):
frameB.motion[i,:,:] = multiply_transformations(frameB.motion[i,:,:], inverse(frameB_to_A))
# since camera is in merged reference frame, add it to motion matrix
merged_frame.motion = np.vstack((merged_frame.motion, frameB.motion[-1,:,:].reshape((-1,3,4))))
# we need to reconcile the matched points to generate the structure.
# we need to merge the matched_points from each additional frame, but must
# associate points that correspond to already seen points in the same
# column
trA = np.where(frameA.match_idx[0,:] >= 0)[0]
xyA = frameA.match_points[frameA.match_idx[-1, trA], :]
trB = np.where(frameB.match_idx[0,:] >= 0)[0]
xyB = frameB.match_points[frameB.match_idx[0, trB], :]
xy_common, iA, iB = row_intersection(xyA, xyB)
xy_common = xy_common.T
merged_frame.match_idx = np.vstack((merged_frame.match_idx, neg_ones((1, merged_frame.match_idx.shape[1]))))
for i in xrange(xy_common.shape[1]):
idA = trA[iA[i]]
idB = trB[iB[i]]
B_match_idx = frameB.match_idx[1, idB]
merged_frame.match_points = np.vstack((merged_frame.match_points, frameB.match_points[B_match_idx, :]))
merged_frame.match_idx[length, idA] = merged_frame.match_points.shape[0]-1
# One of the cameras in frame B is the same as frame A
# We will add all new points from this camera into the match fields
xy_new, iB, iA = row_set_diff(xyB, xyA)
xy_new = xy_new.T
for i in xrange(xy_new.shape[1]):
idB = trB[iB[i]]
merged_frame.match_points = np.vstack((merged_frame.match_points,frameB.match_points[frameB.match_idx[0,idB],:]))
merged_frame.match_idx = np.hstack((merged_frame.match_idx, neg_ones((merged_frame.match_idx.shape[0],1))))
merged_frame.match_idx[length-1,-1] = merged_frame.match_points.shape[0]-1
merged_frame.structure = np.vstack((merged_frame.structure, frameB.structure[idB,:]))
B_match_idx = frameB.match_idx[1, idB]
merged_frame.match_points = np.vstack((merged_frame.match_points, frameB.match_points[B_match_idx,:]))
merged_frame.match_idx[length,-1] = merged_frame.match_points.shape[0]-1
# The other camera in frame B is new
# We can simply add all the points from here
# TODO: This part is not implemented currently, but a full SFM pipeline should have it
return merged_frame
'''
MERGE_ALL_FRAMES
Arguments:
frames - a list of frames
Returns:
merged_frame - a frame which contains the information of all the frames
'''
def merge_all_frames(frames):
merged_frame = deepcopy(frames[0])
for i in xrange(1,len(frames)):
merged_frame = merge_two_frames(merged_frame, frames[i], i+1)
merged_frame.structure = triangulate(merged_frame)
bundle_adjustment(merged_frame)
remove_outliers(merged_frame, 10)
bundle_adjustment(merged_frame)
return merged_frame