-
Notifications
You must be signed in to change notification settings - Fork 282
/
mkdocs.yml
197 lines (192 loc) · 10.5 KB
/
mkdocs.yml
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
site_name: DSSG Hitchhickers guide
theme:
name: 'material'
palette:
primary: 'red'
accent: 'deep orange'
font:
text: 'Ubuntu'
code: 'Ubuntu Mono'
logo:
icon: 'bubble_chart'
favicon: 'assets/images/favicon.ico'
docs_dir: sources
repo_name: 'dssg/hitchhikers-guide'
repo_url: https://github.com/dssg/hitchhikers-guide
edit_uri: edit/master/sources
site_description: 'DSSG Hitchhikers guide'
extra:
social:
- type: 'github'
link: 'https://github.com/dssg/hitchhikers-guide'
- type: 'twitter'
link: 'https://twitter.com/datascifellows'
- type: 'linkedin'
link: 'https://linkedin.com/company/center-for-data-science-and-public-policy-university-of-chicago'
markdown_extensions:
- admonition
- toc:
permalink: "#"
baselevel: 1
toc_depth: 3
separator: "-"
- codehilite:
guess_lang: false
- def_list
- footnotes
- meta
- pymdownx.arithmatex
- pymdownx.b64
- pymdownx.caret
- pymdownx.critic
- pymdownx.details
- pymdownx.extrarawhtml
- pymdownx.keys
- pymdownx.highlight
- pymdownx.snippets
- pymdownx.superfences
- pymdownx.tasklist:
custom_checkbox: true
- pymdownx.tilde
extra_javascript:
- "js/mermaid.min.js"
- 'https://cdnjs.cloudflare.com/ajax/libs/mathjax/2.7.0/MathJax.js?config=TeX-MML-AM_CHTML'
nav:
- Home: README.md
- What is in this curriculum?: what-is-dssg.md
- DSSG Locations: host-cities.md
- DSSG Manual (for summer fellows):
- What is in this manual: dssg-manual/README.md
- Goals of the Fellowship: dssg-manual/conduct-culture-and-communications/goals.md
- The DSSG Environment: dssg-manual/conduct-culture-and-communications/environment.md
- Summer overview: dssg-manual/summer-overview/README.md
- Code of conduct: dssg-manual/conduct-culture-and-communications/README.md
- Curriculum:
- What is in this curriculum: curriculum/README.md
- Sample curriculum for Summer 2019: curriculum/sample.md
- Skills you need throughout a project:
- Ethics, Bias, Fairness: curriculum/skills/ethics_bias_fairness.md
- Communication:
- Intro: curriculum/communication/README.md
- Presentations: curriculum/communication/presentations.md
- Writing reports: curriculum/communication/writing.md
- Visualization: curriculum/eda/visualization.md
- User interface: curriculum/communication/user_interface.md
- Good Software Practices:
- Intro: curriculum/programming_best_practices/README.md
- Good repos, good code: curriculum/programming_best_practices/reproducible-software/good_repos_good_code.md
- Legible, good code: curriculum/programming_best_practices/legible-good-code/README.md
- Writing tests: curriculum/programming_best_practices/test-test-test/README.md
- Reproducible software: curriculum/programming_best_practices/reproducible-software/README.md
- Pimp my dotfiles!: curriculum/programming_best_practices/pimp-my-dotfiles/README.md
- Domain Understanding: curriculum/skills/domain_understanding.md
- Project Scoping:
- Scoping overview: curriculum/scoping/overview.md
- Project workflow: curriculum/scoping/project_workflow.md
- Data Maturity evaluation: curriculum/scoping/dme.md
- Project deliverables: curriculum/scoping/deliverables.md
- Tech setup:
- Software you need: curriculum/setup/software-setup/README.md
- Software setup session: curriculum/setup/software-setup/setup_session_guide.md
- Command line intro: curriculum/setup/command-line-tools/README.md
- Git and github:
- What is it?: curriculum/setup/git-and-github/README.md
- Basic tutorial: curriculum/setup/git-and-github/basic_git_tutorial/README.md
- Group tutorial: curriculum/setup/git-and-github/group_tutorial/README.md
- Advanced notes: curriculum/setup/git-and-github/branching_and_merging/README.md
- Git Workflow: curriculum/setup/git-and-github/githubflow/github-flow.html
- Git branching: curriculum/setup/git-and-github/branching_and_pull_requests.md
- Python:
- Basic Python: curriculum/software/basic_python.md
- Python, Pandas and Viz: curriculum/software/python_sql_pandas_viz.md
- Python and SQL: curriculum/software/python_sql.md
- SQL:
- SQL Basics: curriculum/software/basic_sql/README.md
- Postgres Tips and Pitfalls: curriculum/1_getting_and_keeping_data/databases/making_databases_work_for_you.md
- Good repos: curriculum/setup/good_repos.md
- Technical workflow: curriculum/setup/software-setup/TechnicalWorkflowAndBestPractices.md
- Getting, storing, and linking data:
- Intro: curriculum/1_getting_and_keeping_data/README.md
- Data security: curriculum/get_data/data-security-primer/README.md
- Get data:
- APIs and scrapping: curriculum/1_getting_and_keeping_data/basic-web-scraping/README.md
- Working with images: curriculum/get_data/images.md
- Working with text: curriculum/2_data_exploration_and_analysis/text-analysis/README.md
- Flat files: curriculum/1_getting_and_keeping_data/csv-to-db/README.md
- Store data:
- ETL - cleaning, loading: curriculum/1_getting_and_keeping_data/reproducible_ETL/README.md
- DBs:
- Why a DB?: curriculum/dbs/why.md
- Designing a DB: curriculum/dbs/relational_design.md
- Getting data in: curriculum/dbs/getting_data_in.md
- Getting data out: curriculum/dbs/getting_data_out.md
- Analyzing data (SQL): curriculum/software/sql_data_analysis.md
- Other types of DBs: curriculum/dbs/other_types.md
- Link data:
- Record linkage: curriculum/2_data_exploration_and_analysis/record-linkage/README.md
- Data Exploration:
- Introduction to EDA: curriculum/2_data_exploration_and_analysis/README.md
- Visualization: curriculum/eda/visualization.md
- SQL: curriculum/2_data_exploration_and_analysis/advanced_sql/README.md
- Python/Pandas: curriculum/2_data_exploration_and_analysis/data-exploration-in-python/README.md
- GIS: curriculum/2_data_exploration_and_analysis/gis_analysis/postgis-workshop/README.md
- Text: curriculum/2_data_exploration_and_analysis/text-analysis/README.md
- Network: curriculum/2_data_exploration_and_analysis/network-analysis/README.md
- Tableau: curriculum/eda/tableau.md
- Data stories concept and code: curriculum/eda/data_stories.md
- ML as a data exploration tool (Clustering): curriculum/eda/clustering.md
- Computational and Data Analysis Methods:
- Intro: curriculum/3_modeling_and_machine_learning/README.md
- Machine Learning: curriculum/3_modeling_and_machine_learning/machine-learning/README.md
- Causal inference methods: curriculum/methods/causal_inference.md
- Social science methods: curriculum/methods/social_science.md
- Other statistical analysis methods: curriculum/methods/statistical_analysis.md
- OR/optimization methods: curriculum/methods/or.md
- Problem Templates in Social Good and Public Policy: curriculum/ml/templates.md
- Practical Steps in Using Machine Learning to Solve Social Problems:
- Building an ML Pipeline:
- ML pipeline I: curriculum/ml/pipeline.md
- Set up problem:
- ML problem formulation: curriculum/ml/problem_formulation.md
- ML Checklist: curriculum/ml/checklist.md
- Templates of policy problems: curriculum/ml/templates.md
- Labels/Outcomes:
- One or many: curriculum/ml/labels/one_or_many.md
- Implications of a label: curriculum/ml/labels/implications.md
- Features/Predictors:
- Feature engineering: curriculum/ml/feature_engineering/intro.md
- Workshop on feature engineering: curriculum/ml/feature_engineering/workshop.md
- Case studies: curriculum/ml/feature_engineering/case_studies.md
- Validation Methodology:
- Process and goal: curriculum/ml/validation/process_and_goal.md
- K-fold cross-validation: curriculum/ml/validation/kfold.md
- Temporal cross-validation: curriculum/ml/validation/tcc.md
- Field trials: curriculum/ml/validation/field_trials.md
- Evalution Metrics:
- Overview: curriculum/ml/metrics/overview.md
- Examples: curriculum/ml/metrics/examples.md
- Models/Methods:
- Machine learning methods: curriculum/ml/methods.md
- Practical tips on how to use them, parameters, etc.: curriculum/ml/tips.md
- Model selection:
- Audition: curriculum/ml/selection/audition.md
- What metrics do we care about?:
- Performance: curriculum/ml/selection/performance.md
- Stability: curriculum/ml/selection/stability.md
- Interpretability: curriculum/ml/selection/interpretability.md
- Bias: curriculum/ml/selection/bias.md
- Postmodeling:
- Model understanding: curriculum/ml/postmodeling/understanding.md
- Feature importance: curriculum/ml/postmodeling/feature_importance.md
- Comparing different models: curriculum/ml/postmodeling/model_comparison.md
- Comparing lists: curriculum/ml/postmodeling/list_comparison.md
- Error analysis: curriculum/ml/postmodeling/error_analysis.md
- Bias analysis: curriculum/ml/postmodeling/bias_analysis.md
- Experimental design:
- Experiment design: curriculum/experimental_design/intro.md
- Case studies: curriculum/experimental_design/case_studies.md
- Deployment and Maintenance:
- How to deploy: curriculum/deployment/how_to.md
- Monitor: curriculum/deployment/monitor.md
- Update: curriculum/deployment/update.md
- Advanced pipelines: curriculum/deployment/advanced_pipelines.md