-
Notifications
You must be signed in to change notification settings - Fork 45
/
config.py
50 lines (41 loc) · 2.05 KB
/
config.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
import argparse
parser = argparse.ArgumentParser(description='FIDTM')
parser.add_argument('--dataset', type=str, default='ShanghaiA',
help='choice train dataset')
parser.add_argument('--save_path', type=str, default='save_file/A_baseline',
help='save checkpoint directory')
parser.add_argument('--workers', type=int, default=16,
help='load data workers')
parser.add_argument('--print_freq', type=int, default=200,
help='print frequency')
parser.add_argument('--start_epoch', type=int, default=0,
help='start epoch for training')
parser.add_argument('--epochs', type=int, default=3000,
help='end epoch for training')
parser.add_argument('--pre', type=str, default=None,
help='pre-trained model directory')
# parser.add_argument('--pre', type=str, default='./model_best_qnrf.pth',
# help='pre-trained model directory')
parser.add_argument('--batch_size', type=int, default=16,
help='input batch size for training')
parser.add_argument('--crop_size', type=int, default=256,
help='crop size for training')
parser.add_argument('--seed', type=int, default=1,
help='random seed')
parser.add_argument('--best_pred', type=int, default=1e5,
help='best pred')
parser.add_argument('--gpu_id', type=str, default='1',
help='gpu id')
parser.add_argument('--lr', type=float, default= 1e-4,
help='learning rate')
parser.add_argument('--weight_decay', type=float, default=5 * 1e-4,
help='weight decay')
parser.add_argument('--preload_data', type=bool, default=True,
help='preload data. ')
parser.add_argument('--visual', type=bool, default=False,
help='visual for bounding box. ')
'''video demo'''
parser.add_argument('--video_path', type=str, default=None,
help='input video path ')
args = parser.parse_args()
return_args = parser.parse_args()