forked from hibiken/asynq
-
Notifications
You must be signed in to change notification settings - Fork 0
/
processor.go
565 lines (513 loc) · 16.2 KB
/
processor.go
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
// Copyright 2020 Kentaro Hibino. All rights reserved.
// Use of this source code is governed by a MIT license
// that can be found in the LICENSE file.
package asynq
import (
"context"
"fmt"
"math"
"math/rand"
"runtime"
"runtime/debug"
"sort"
"strings"
"sync"
"time"
"github.com/hibiken/asynq/internal/base"
asynqcontext "github.com/hibiken/asynq/internal/context"
"github.com/hibiken/asynq/internal/errors"
"github.com/hibiken/asynq/internal/log"
"github.com/hibiken/asynq/internal/timeutil"
"golang.org/x/time/rate"
)
type processor struct {
logger *log.Logger
broker base.Broker
clock timeutil.Clock
handler Handler
baseCtxFn func() context.Context
queueConfig map[string]int
// orderedQueues is set only in strict-priority mode.
orderedQueues []string
taskCheckInterval time.Duration
retryDelayFunc RetryDelayFunc
isFailureFunc func(error) bool
errHandler ErrorHandler
shutdownTimeout time.Duration
finishedHandler FinishedHandler
// channel via which to send sync requests to syncer.
syncRequestCh chan<- *syncRequest
// rate limiter to prevent spamming logs with a bunch of errors.
errLogLimiter *rate.Limiter
// sema is a counting semaphore to ensure the number of active workers
// does not exceed the limit.
sema chan struct{}
// channel to communicate back to the long running "processor" goroutine.
// once is used to send value to the channel only once.
done chan struct{}
once sync.Once
// quit channel is closed when the shutdown of the "processor" goroutine starts.
quit chan struct{}
// abort channel communicates to the in-flight worker goroutines to stop.
abort chan struct{}
// cancelations is a set of cancel functions for all active tasks.
cancelations *base.Cancelations
starting chan<- *workerInfo
finished chan<- *base.TaskMessage
}
type processorParams struct {
logger *log.Logger
broker base.Broker
baseCtxFn func() context.Context
retryDelayFunc RetryDelayFunc
taskCheckInterval time.Duration
isFailureFunc func(error) bool
syncCh chan<- *syncRequest
cancelations *base.Cancelations
concurrency int
queues map[string]int
strictPriority bool
errHandler ErrorHandler
finishedHandler FinishedHandler
shutdownTimeout time.Duration
starting chan<- *workerInfo
finished chan<- *base.TaskMessage
}
// newProcessor constructs a new processor.
func newProcessor(params processorParams) *processor {
queues := normalizeQueues(params.queues)
orderedQueues := []string(nil)
if params.strictPriority {
orderedQueues = sortByPriority(queues)
}
return &processor{
logger: params.logger,
broker: params.broker,
baseCtxFn: params.baseCtxFn,
clock: timeutil.NewRealClock(),
queueConfig: queues,
orderedQueues: orderedQueues,
taskCheckInterval: params.taskCheckInterval,
retryDelayFunc: params.retryDelayFunc,
isFailureFunc: params.isFailureFunc,
syncRequestCh: params.syncCh,
cancelations: params.cancelations,
errLogLimiter: rate.NewLimiter(rate.Every(3*time.Second), 1),
sema: make(chan struct{}, params.concurrency),
done: make(chan struct{}),
quit: make(chan struct{}),
abort: make(chan struct{}),
errHandler: params.errHandler,
finishedHandler: params.finishedHandler,
handler: HandlerFunc(func(ctx context.Context, t *Task) error { return fmt.Errorf("handler not set") }),
shutdownTimeout: params.shutdownTimeout,
starting: params.starting,
finished: params.finished,
}
}
// Note: stops only the "processor" goroutine, does not stop workers.
// It's safe to call this method multiple times.
func (p *processor) stop() {
p.once.Do(func() {
p.logger.Debug("Processor shutting down...")
// Unblock if processor is waiting for sema token.
close(p.quit)
// Signal the processor goroutine to stop processing tasks
// from the queue.
p.done <- struct{}{}
})
}
// NOTE: once shutdown, processor cannot be re-started.
func (p *processor) shutdown() {
p.stop()
time.AfterFunc(p.shutdownTimeout, func() { close(p.abort) })
p.logger.Info("Waiting for all workers to finish...")
// block until all workers have released the token
for i := 0; i < cap(p.sema); i++ {
p.sema <- struct{}{}
}
p.logger.Info("All workers have finished")
}
func (p *processor) start(wg *sync.WaitGroup) {
wg.Add(1)
go func() {
defer wg.Done()
for {
select {
case <-p.done:
p.logger.Debug("Processor done")
return
default:
p.exec()
}
}
}()
}
// exec pulls a task out of the queue and starts a worker goroutine to
// process the task.
func (p *processor) exec() {
select {
case <-p.quit:
return
case p.sema <- struct{}{}: // acquire token
qnames := p.queues()
msg, leaseExpirationTime, err := p.broker.Dequeue(qnames...)
switch {
case errors.Is(err, errors.ErrNoProcessableTask):
p.logger.Debug("All queues are empty")
// Queues are empty, this is a normal behavior.
// Sleep to avoid slamming redis and let scheduler move tasks into queues.
// Note: We are not using blocking pop operation and polling queues instead.
// This adds significant load to redis.
time.Sleep(p.taskCheckInterval)
<-p.sema // release token
return
case err != nil:
if p.errLogLimiter.Allow() {
p.logger.Errorf("Dequeue error: %v", err)
}
<-p.sema // release token
return
}
lease := base.NewLease(leaseExpirationTime)
deadline := p.computeDeadline(msg)
p.starting <- &workerInfo{msg, time.Now(), deadline, lease}
go func() {
defer func() {
p.finished <- msg
<-p.sema // release token
}()
ctx, cancel := asynqcontext.New(p.baseCtxFn(), msg, deadline)
p.cancelations.Add(msg.ID, cancel)
defer func() {
cancel()
p.cancelations.Delete(msg.ID)
}()
// check context before starting a worker goroutine.
select {
case <-ctx.Done():
// already canceled (e.g. deadline exceeded).
p.handleFailedMessage(ctx, lease, msg, ctx.Err())
return
default:
}
resCh := make(chan error, 1)
go func() {
task := newTask(
msg.Type,
msg.Payload,
&ResultWriter{
id: msg.ID,
qname: msg.Queue,
broker: p.broker,
ctx: ctx,
},
)
resCh <- p.perform(ctx, task)
}()
select {
case <-p.abort:
// time is up, push the message back to queue and quit this worker goroutine.
p.logger.Warnf("Quitting worker. task id=%s", msg.ID)
p.requeue(lease, msg)
return
case <-lease.Done():
cancel()
p.handleFailedMessage(ctx, lease, msg, ErrLeaseExpired)
return
case <-ctx.Done():
p.handleFailedMessage(ctx, lease, msg, ctx.Err())
return
case resErr := <-resCh:
if resErr != nil {
p.handleFailedMessage(ctx, lease, msg, resErr)
return
}
p.handleSucceededMessage(lease, msg)
}
}()
}
}
func (p *processor) requeue(l *base.Lease, msg *base.TaskMessage) {
if !l.IsValid() {
// If lease is not valid, do not write to redis; Let recoverer take care of it.
return
}
ctx, _ := context.WithDeadline(context.Background(), l.Deadline())
err := p.broker.Requeue(ctx, msg)
if err != nil {
p.logger.Errorf("Could not push task id=%s back to queue: %v", msg.ID, err)
} else {
p.logger.Infof("Pushed task id=%s back to queue", msg.ID)
}
}
func (p *processor) handleSucceededMessage(l *base.Lease, msg *base.TaskMessage) {
if msg.Retention > 0 {
p.markAsComplete(l, msg)
} else {
p.markAsDone(l, msg)
}
}
func (p *processor) markAsComplete(l *base.Lease, msg *base.TaskMessage) {
if !l.IsValid() {
// If lease is not valid, do not write to redis; Let recoverer take care of it.
return
}
ctx, _ := context.WithDeadline(context.Background(), l.Deadline())
err := p.broker.MarkAsComplete(ctx, msg)
if err != nil {
errMsg := fmt.Sprintf("Could not move task id=%s type=%q from %q to %q: %+v",
msg.ID, msg.Type, base.ActiveKey(msg.Queue), base.CompletedKey(msg.Queue), err)
p.logger.Warnf("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
if err := p.broker.MarkAsComplete(ctx, msg); err != nil {
return err
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
return nil
},
errMsg: errMsg,
deadline: l.Deadline(),
}
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
}
func (p *processor) markAsDone(l *base.Lease, msg *base.TaskMessage) {
if !l.IsValid() {
// If lease is not valid, do not write to redis; Let recoverer take care of it.
return
}
ctx, _ := context.WithDeadline(context.Background(), l.Deadline())
err := p.broker.Done(ctx, msg)
if err != nil {
errMsg := fmt.Sprintf("Could not remove task id=%s type=%q from %q err: %+v", msg.ID, msg.Type, base.ActiveKey(msg.Queue), err)
p.logger.Warnf("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
if err := p.broker.Done(ctx, msg); err != nil {
return err
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
return nil
},
errMsg: errMsg,
deadline: l.Deadline(),
}
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
}
// SkipRetry is used as a return value from Handler.ProcessTask to indicate that
// the task should not be retried and should be archived instead.
var SkipRetry = errors.New("skip retry for the task")
func (p *processor) handleFailedMessage(ctx context.Context, l *base.Lease, msg *base.TaskMessage, err error) {
if p.errHandler != nil {
p.errHandler.HandleError(ctx, NewTask(msg.Type, msg.Payload), err)
}
if !p.isFailureFunc(err) {
// retry the task without marking it as failed
p.retry(l, msg, err, false /*isFailure*/)
return
}
if msg.Retried >= msg.Retry || errors.Is(err, SkipRetry) {
p.logger.Warnf("Retry exhausted for task id=%s", msg.ID)
p.archive(l, msg, err)
} else {
p.retry(l, msg, err, true /*isFailure*/)
}
}
func (p *processor) retry(l *base.Lease, msg *base.TaskMessage, e error, isFailure bool) {
if !l.IsValid() {
// If lease is not valid, do not write to redis; Let recoverer take care of it.
return
}
ctx, _ := context.WithDeadline(context.Background(), l.Deadline())
d := p.retryDelayFunc(msg.Retried, e, NewTask(msg.Type, msg.Payload))
retryAt := time.Now().Add(d)
err := p.broker.Retry(ctx, msg, retryAt, e.Error(), isFailure)
if err != nil {
errMsg := fmt.Sprintf("Could not move task id=%s from %q to %q", msg.ID, base.ActiveKey(msg.Queue), base.RetryKey(msg.Queue))
p.logger.Warnf("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
return p.broker.Retry(ctx, msg, retryAt, e.Error(), isFailure)
},
errMsg: errMsg,
deadline: l.Deadline(),
}
}
}
func (p *processor) archive(l *base.Lease, msg *base.TaskMessage, e error) {
if !l.IsValid() {
// If lease is not valid, do not write to redis; Let recoverer take care of it.
return
}
ctx, _ := context.WithDeadline(context.Background(), l.Deadline())
err := p.broker.Archive(ctx, msg, e.Error())
if err != nil {
errMsg := fmt.Sprintf("Could not move task id=%s from %q to %q", msg.ID, base.ActiveKey(msg.Queue), base.ArchivedKey(msg.Queue))
p.logger.Warnf("%s; Will retry syncing", errMsg)
p.syncRequestCh <- &syncRequest{
fn: func() error {
if err := p.broker.Archive(ctx, msg, e.Error()); err != nil {
return err
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
return nil
},
errMsg: errMsg,
deadline: l.Deadline(),
}
}
if p.finishedHandler != nil {
p.finishedHandler.HandleFinished(newTaskInfo(msg, base.TaskStateArchived, time.Time{}, nil))
}
}
// queues returns a list of queues to query.
// Order of the queue names is based on the priority of each queue.
// Queue names is sorted by their priority level if strict-priority is true.
// If strict-priority is false, then the order of queue names are roughly based on
// the priority level but randomized in order to avoid starving low priority queues.
func (p *processor) queues() []string {
// skip the overhead of generating a list of queue names
// if we are processing one queue.
if len(p.queueConfig) == 1 {
for qname := range p.queueConfig {
return []string{qname}
}
}
if p.orderedQueues != nil {
return p.orderedQueues
}
var names []string
for qname, priority := range p.queueConfig {
for i := 0; i < priority; i++ {
names = append(names, qname)
}
}
r := rand.New(rand.NewSource(time.Now().UnixNano()))
r.Shuffle(len(names), func(i, j int) { names[i], names[j] = names[j], names[i] })
return uniq(names, len(p.queueConfig))
}
// perform calls the handler with the given task.
// If the call returns without panic, it simply returns the value,
// otherwise, it recovers from panic and returns an error.
func (p *processor) perform(ctx context.Context, task *Task) (err error) {
defer func() {
if x := recover(); x != nil {
errMsg := string(debug.Stack())
p.logger.Errorf("recovering from panic. See the stack trace below for details:\n%s", errMsg)
_, file, line, ok := runtime.Caller(1) // skip the first frame (panic itself)
if ok && strings.Contains(file, "runtime/") {
// The panic came from the runtime, most likely due to incorrect
// map/slice usage. The parent frame should have the real trigger.
_, file, line, ok = runtime.Caller(2)
}
// Include the file and line number info in the error, if runtime.Caller returned ok.
if ok {
err = fmt.Errorf("panic [%s:%d]: %v", file, line, x)
} else {
err = fmt.Errorf("panic: %v", x)
}
err = &errors.PanicError{
ErrMsg: errMsg,
}
}
}()
return p.handler.ProcessTask(ctx, task)
}
// uniq dedupes elements and returns a slice of unique names of length l.
// Order of the output slice is based on the input list.
func uniq(names []string, l int) []string {
var res []string
seen := make(map[string]struct{})
for _, s := range names {
if _, ok := seen[s]; !ok {
seen[s] = struct{}{}
res = append(res, s)
}
if len(res) == l {
break
}
}
return res
}
// sortByPriority returns a list of queue names sorted by
// their priority level in descending order.
func sortByPriority(qcfg map[string]int) []string {
var queues []*queue
for qname, n := range qcfg {
queues = append(queues, &queue{qname, n})
}
sort.Sort(sort.Reverse(byPriority(queues)))
var res []string
for _, q := range queues {
res = append(res, q.name)
}
return res
}
type queue struct {
name string
priority int
}
type byPriority []*queue
func (x byPriority) Len() int { return len(x) }
func (x byPriority) Less(i, j int) bool { return x[i].priority < x[j].priority }
func (x byPriority) Swap(i, j int) { x[i], x[j] = x[j], x[i] }
// normalizeQueues divides priority numbers by their greatest common divisor.
func normalizeQueues(queues map[string]int) map[string]int {
var xs []int
for _, x := range queues {
xs = append(xs, x)
}
d := gcd(xs...)
res := make(map[string]int)
for q, x := range queues {
res[q] = x / d
}
return res
}
func gcd(xs ...int) int {
fn := func(x, y int) int {
for y > 0 {
x, y = y, x%y
}
return x
}
res := xs[0]
for i := 0; i < len(xs); i++ {
res = fn(xs[i], res)
if res == 1 {
return 1
}
}
return res
}
// computeDeadline returns the given task's deadline,
func (p *processor) computeDeadline(msg *base.TaskMessage) time.Time {
if msg.Timeout == 0 && msg.Deadline == 0 {
p.logger.Errorf("asynq: internal error: both timeout and deadline are not set for the task message: %s", msg.ID)
return p.clock.Now().Add(defaultTimeout)
}
if msg.Timeout != 0 && msg.Deadline != 0 {
deadlineUnix := math.Min(float64(p.clock.Now().Unix()+msg.Timeout), float64(msg.Deadline))
return time.Unix(int64(deadlineUnix), 0)
}
if msg.Timeout != 0 {
return p.clock.Now().Add(time.Duration(msg.Timeout) * time.Second)
}
return time.Unix(msg.Deadline, 0)
}
func IsPanicError(err error) bool {
return errors.IsPanicError(err)
}