Skip to content

Latest commit

 

History

History
503 lines (255 loc) · 10.9 KB

README.md

File metadata and controls

503 lines (255 loc) · 10.9 KB

NumpSy

Straight up mix between NumPy, SymPy and Pandas into a value single-declaration extendable framework to simulatenously perform symbolic and numerical operations.

Objectives:

  1. Ever think you wanted to simultaneously perform numerical and symbolic mathematics for an engineering or optimization derivation? Now you can pretty much intuitively derivate simultaneously whilst performing unit management automatically.
  2. Integrate mathematical analytical derivation Python toolchains into a single handy one that retains and expands each of the constituent packages methods. Retain intuitive compatibility.
  3. Have fun!

Is it any good?

I think it's an elegant mathematical representation to simultanously perform symbolic, numerical, and data science operations into a single system. It targets a minimal overhead to raw numpy, sympy or scipy operations.

Quick Start

Download the Anaconda distribution first.

Pip install:

$ pip install numpsy

Local install for most recent version:

$ git clone https://github.com/daquintero/numpsy.git
$ cd numpsy
$ python3 setup.py install

Quick Example

See the 10 minutes to NumpSy jupyter notebook for much more.

Installation

Import NumpSy

import numpsy as nsy

Units

Declare a Unit

meter = nsy.Unit(name="meter", symbol="m")
meter
Unit
name meter
symbol \begin{equation}m\end{equation}
symbolic_expression \begin{equation}Ø\end{equation}

Retrieve attributes from this Unit

meter.s

$\displaystyle m$

meter.symbol

$\displaystyle m$

meter.name
'meter'

Operate with this unit

farad_per_meter = nsy.Unit(name="Farad", symbol="F") / meter
farad_per_meter
Unit
name (Farad)per(meter)
symbol \begin{equation}Ø\end{equation}
symbolic_expression \begin{equation}\frac{F}{m}\end{equation}

Append to Unit Library

nsy.Units().data
Hertz     Unit       name name_expression               ...
Farad     Unit       name name_expression               ...
meter     Unit       name name_expression               ...
ohm       Unit     name name_expression                 ...
ratio     Unit       name name_expression               ...
second    Unit        name name_expression              ...
Name: 0, dtype: object
nsy.u
Hertz     Unit       name name_expression               ...
Farad     Unit       name name_expression               ...
meter     Unit       name name_expression               ...
ohm       Unit     name name_expression                 ...
ratio     Unit       name name_expression               ...
second    Unit        name name_expression              ...
Name: 0, dtype: object

Constant

e_0 = nsy.Constant(
    name="permittivity_vaccum",
    symbol= "\epsilon_0",
    numerical=8.8541878128e-12,
    unit=farad_per_meter
)
e_0
Constant
name permittivity_vaccum
symbol \begin{equation}\epsilon_0\end{equation}
symbolic_expression \begin{equation}Ø\end{equation}
numerical 8.8541878128e-12
unit Symbol: \begin{equation}Ø\end{equation}
Symbolic Expression: \begin{equation}\frac{F}{m}\end{equation}
e_0.s

$\displaystyle \epsilon_0$

e_0.n
8.8541878128e-12
e_d = nsy.Constant(
    name="dielectric_permittivity",
    symbol= "\epsilon_d",
    numerical=5,
    unit=nsy.u.ratio
)
e_d
Constant
name dielectric_permittivity
symbol \begin{equation}\epsilon_d\end{equation}
symbolic_expression \begin{equation}Ø\end{equation}
numerical 5
unit Symbol: \begin{equation}\end{equation}
Symbolic Expression: \begin{equation}Ø\end{equation}

Constants cannot be mutated

e_d.n = 10
Constant cannot be mutated. You cannot set any attribute value. Instantiate a new variable.

Variable

capacitor_plate_separation = nsy.Variable(
    name="capacitor_plate_separation",
    symbol= "d",
    numerical=None,
    unit=nsy.u.meter
)
capacitor_plate_separation
Variable
name capacitor_plate_separation
symbol \begin{equation}d\end{equation}
symbolic_expression \begin{equation}Ø\end{equation}
numerical
unit Symbol: \begin{equation}m\end{equation}
Symbolic Expression: \begin{equation}Ø\end{equation}
capacitor_plate_separation.s

$\displaystyle d$

capacitor_plate_separation.u
Unit
name meter
symbol \begin{equation}m\end{equation}
symbolic_expression \begin{equation}Ø\end{equation}

Variables can be mutated

capacitor_plate_separation.n = 1e-6
capacitor_plate_separation.n
1e-06
capacitor_plate_separation.numerical = 3e-5
capacitor_plate_separation.numerical
3e-05

Operate between Value objects

Constants and Variables are value objects.

capacitance_per_plate_cross_sectional_area = e_d / (e_0 * capacitor_plate_separation)
capacitance_per_plate_cross_sectional_area
Value
name
symbol \begin{equation}Ø\end{equation}
symbolic_expression \begin{equation}\frac{\epsilon_d}{\epsilon_0 d}\end{equation}
numerical 1.8823484456216984e+16
unit Symbol: \begin{equation}Ø\end{equation}
Symbolic Expression: \begin{equation}\frac{}{F}\end{equation}
capacitance_per_plate_cross_sectional_area.se

$\displaystyle \frac{\epsilon_d}{\epsilon_0 d}$

capacitance_per_plate_cross_sectional_area.n
1.8823484456216984e+16

Perform Flexible Class Operations

raw_capacitor_cross_sectional_area = (1e-6) ** 2
raw_capacitor_cross_sectional_area
1e-12
device_capacitance = capacitance_per_plate_cross_sectional_area * raw_capacitor_cross_sectional_area
device_capacitance
Value
name
symbol \begin{equation}Ø\end{equation}
symbolic_expression \begin{equation}\frac{\epsilon_d Ø}{\epsilon_0 d}\end{equation}
numerical 18823.484456216982
unit Symbol: \begin{equation}Ø\end{equation}
Symbolic Expression: \begin{equation}\frac{Ø}{F}\end{equation}
device_capacitance.name
''
device_capacitance.se

$\displaystyle \frac{\epsilon_d Ø}{\epsilon_0 d}$

device_capacitance.symbol = "F"
device_capacitance.symbol

$\displaystyle F$

raw_capacitor_cross_sectional_area
1e-12
Example Functions
nsy.sqrt(device_capacitance)
Value
name
symbol \begin{equation}Ø\end{equation}
symbolic_expression \begin{equation}\sqrt{F}\end{equation}
numerical 137.19870428038664
unit Symbol: \begin{equation}Ø\end{equation}
Symbolic Expression: \begin{equation}\sqrt{\frac{Ø}{F}}\end{equation}
nsy.sinh(device_capacitance)
Value
name
symbol \begin{equation}Ø\end{equation}
symbolic_expression \begin{equation}\sinh{\left(F \right)}\end{equation}
numerical inf
unit Symbol: \begin{equation}Ø\end{equation}
Symbolic Expression: \begin{equation}\sqrt{\frac{Ø}{F}}\end{equation}

Future plans

  • Extend unit management and verification.
  • Create a full constants list, probably even in Excel or as an importable CSV file into Pandas.

Open to contributions.