forked from k2-fsa/icefall
-
Notifications
You must be signed in to change notification settings - Fork 0
/
prepare.sh
executable file
·161 lines (137 loc) · 5.78 KB
/
prepare.sh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#!/usr/bin/env bash
# fix segmentation fault reported in https://github.com/k2-fsa/icefall/issues/674
export PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python
set -eou pipefail
stage=0
stop_stage=100
sampling_rate=24000
nj=32
dl_dir=$PWD/download
. shared/parse_options.sh || exit 1
# All files generated by this script are saved in "data".
# You can safely remove "data" and rerun this script to regenerate it.
mkdir -p data
log() {
# This function is from espnet
local fname=${BASH_SOURCE[1]##*/}
echo -e "$(date '+%Y-%m-%d %H:%M:%S') (${fname}:${BASH_LINENO[0]}:${FUNCNAME[1]}) $*"
}
log "dl_dir: $dl_dir"
if [ $stage -le -1 ] && [ $stop_stage -ge -1 ]; then
log "Stage -1: build monotonic_align lib"
if [ ! -d vits/monotonic_align/build ]; then
cd vits/monotonic_align
python setup.py build_ext --inplace
cd ../../
else
log "monotonic_align lib already built"
fi
fi
if [ $stage -le 0 ] && [ $stop_stage -ge 0 ]; then
log "Stage 0: Download data"
# If you have pre-downloaded it to /path/to/LibriTTS,
# you can create a symlink
#
# ln -sfv /path/to/LibriTTS $dl_dir/LibriTTS
#
if [ ! -d $dl_dir/LibriTTS ]; then
lhotse download libritts $dl_dir
fi
if [ ! -d $dl_dir/xvector_nnet_1a_libritts_clean_460 ]; then
log "Downloading x-vector"
git clone https://huggingface.co/datasets/zrjin/xvector_nnet_1a_libritts_clean_460 $dl_dir/xvector_nnet_1a_libritts_clean_460
mkdir -p exp/xvector_nnet_1a/
cp -r $dl_dir/xvector_nnet_1a_libritts_clean_460/* exp/xvector_nnet_1a/
fi
fi
if [ $stage -le 1 ] && [ $stop_stage -ge 1 ]; then
log "Stage 1: Prepare LibriTTS manifest"
# We assume that you have downloaded the LibriTTS corpus
# to $dl_dir/LibriTTS
mkdir -p data/manifests
if [ ! -e data/manifests/.libritts.done ]; then
lhotse prepare libritts --num-jobs ${nj} $dl_dir/LibriTTS data/manifests
touch data/manifests/.libritts.done
fi
fi
if [ $stage -le 2 ] && [ $stop_stage -ge 2 ]; then
log "Stage 2: Compute Spectrogram for LibriTTS"
mkdir -p data/spectrogram
if [ ! -e data/spectrogram/.libritts.done ]; then
./local/compute_spectrogram_libritts.py --sampling-rate $sampling_rate
touch data/spectrogram/.libritts.done
fi
# Here we shuffle and combine the train-clean-100, train-clean-360 and
# train-other-500 together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-other-500.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
fi
# Here we shuffle and combine the train-clean-100, train-clean-360
# together to form the training set.
if [ ! -f data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz ]; then
cat <(gunzip -c data/spectrogram/libritts_cuts_train-clean-100.jsonl.gz) \
<(gunzip -c data/spectrogram/libritts_cuts_train-clean-360.jsonl.gz) | \
shuf | gzip -c > data/spectrogram/libritts_cuts_train-clean-460.jsonl.gz
fi
if [ ! -e data/spectrogram/.libritts-validated.done ]; then
log "Validating data/spectrogram for LibriTTS"
./local/validate_manifest.py \
data/spectrogram/libritts_cuts_train-all-shuf.jsonl.gz
touch data/spectrogram/.libritts-validated.done
fi
fi
if [ $stage -le 3 ] && [ $stop_stage -ge 3 ]; then
log "Stage 3: Prepare phoneme tokens for LibriTTS"
# We assume you have installed piper_phonemize and espnet_tts_frontend.
# If not, please install them with:
# - piper_phonemize:
# refer to https://github.com/rhasspy/piper-phonemize,
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
# - espnet_tts_frontend:
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
if [ ! -e data/spectrogram/.libritts_with_token.done ]; then
./local/prepare_tokens_libritts.py
touch data/spectrogram/.libritts_with_token.done
fi
fi
if [ $stage -le 4 ] && [ $stop_stage -ge 4 ]; then
log "Stage 4: Generate token file"
# We assume you have installed piper_phonemize and espnet_tts_frontend.
# If not, please install them with:
# - piper_phonemize:
# refer to https://github.com/rhasspy/piper-phonemize,
# could install the pre-built wheels from https://github.com/csukuangfj/piper-phonemize/releases/tag/2023.12.5
# - espnet_tts_frontend:
# `pip install espnet_tts_frontend`, refer to https://github.com/espnet/espnet_tts_frontend/
if [ ! -e data/tokens.txt ]; then
./local/prepare_token_file.py --tokens data/tokens.txt
fi
fi
audio_feats_dir=data/tokenized
dataset_parts="--dataset-parts all" # debug "-p dev-clean -p test-clean"
if [ $stage -le 5 ] && [ $stop_stage -ge 5 ]; then
log "Stage 5: Tokenize/Fbank LibriTTS for valle"
mkdir -p ${audio_feats_dir}
if [ ! -e ${audio_feats_dir}/.libritts.tokenize.done ]; then
python3 ./local/compute_neural_codec_and_prepare_text_tokens.py --dataset-parts "${dataset_parts}" \
--audio-extractor "Encodec" \
--batch-duration 400 \
--src-dir "data/manifests" \
--output-dir "${audio_feats_dir}"
fi
touch ${audio_feats_dir}/.libritts.tokenize.done
lhotse combine \
${audio_feats_dir}/libritts_cuts_train-clean-100.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-clean-360.jsonl.gz \
${audio_feats_dir}/libritts_cuts_train-other-500.jsonl.gz \
${audio_feats_dir}/cuts_train.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_dev-clean.jsonl.gz \
${audio_feats_dir}/cuts_dev.jsonl.gz
lhotse copy \
${audio_feats_dir}/libritts_cuts_test-clean.jsonl.gz \
${audio_feats_dir}/cuts_test.jsonl.gz
fi