forked from Mcompetitions/M4-methods
-
Notifications
You must be signed in to change notification settings - Fork 0
/
ML_benchmarks.py
388 lines (308 loc) · 12.2 KB
/
ML_benchmarks.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
# This code can be used to reproduce the forecasts of M4 Competition NN benchmarks and evaluate their accuracy
from numpy.random import seed
seed(42)
from tensorflow import set_random_seed
set_random_seed(42)
from sklearn.neural_network import MLPRegressor
from keras.models import Sequential
from keras.layers import Dense, SimpleRNN
from keras.optimizers import rmsprop
from keras import backend as ker
from math import sqrt
import numpy as np
import tensorflow as tf
import pandas as pd
import gc
def detrend(insample_data):
"""
Calculates a & b parameters of LRL
:param insample_data:
:return:
"""
x = np.arange(len(insample_data))
a, b = np.polyfit(x, insample_data, 1)
return a, b
def deseasonalize(original_ts, ppy):
"""
Calculates and returns seasonal indices
:param original_ts: original data
:param ppy: periods per year
:return:
"""
"""
# === get in-sample data
original_ts = original_ts[:-out_of_sample]
"""
if seasonality_test(original_ts, ppy):
# print("seasonal")
# ==== get moving averages
ma_ts = moving_averages(original_ts, ppy)
# ==== get seasonality indices
le_ts = original_ts * 100 / ma_ts
le_ts = np.hstack((le_ts, np.full((ppy - (len(le_ts) % ppy)), np.nan)))
le_ts = np.reshape(le_ts, (-1, ppy))
si = np.nanmean(le_ts, 0)
norm = np.sum(si) / (ppy * 100)
si = si / norm
else:
# print("NOT seasonal")
si = np.full(ppy, 100)
return si
def moving_averages(ts_init, window):
"""
Calculates the moving averages for a given TS
:param ts_init: the original time series
:param window: window length
:return: moving averages ts
"""
"""
As noted by Professor Isidro Lloret Galiana:
line 82:
if len(ts_init) % 2 == 0:
should be changed to
if window % 2 == 0:
This change has a minor (less then 0.05%) impact on the calculations of the seasonal indices
In order for the results to be fully replicable this change is not incorporated into the code below
"""
if len(ts_init) % 2 == 0:
ts_ma = pd.rolling_mean(ts_init, window, center=True)
ts_ma = pd.rolling_mean(ts_ma, 2, center=True)
ts_ma = np.roll(ts_ma, -1)
else:
ts_ma = pd.rolling_mean(ts_init, window, center=True)
return ts_ma
def seasonality_test(original_ts, ppy):
"""
Seasonality test
:param original_ts: time series
:param ppy: periods per year
:return: boolean value: whether the TS is seasonal
"""
s = acf(original_ts, 1)
for i in range(2, ppy):
s = s + (acf(original_ts, i) ** 2)
limit = 1.645 * (sqrt((1 + 2 * s) / len(original_ts)))
return (abs(acf(original_ts, ppy))) > limit
def acf(data, k):
"""
Autocorrelation function
:param data: time series
:param k: lag
:return:
"""
m = np.mean(data)
s1 = 0
for i in range(k, len(data)):
s1 = s1 + ((data[i] - m) * (data[i - k] - m))
s2 = 0
for i in range(0, len(data)):
s2 = s2 + ((data[i] - m) ** 2)
return float(s1 / s2)
def split_into_train_test(data, in_num, fh):
"""
Splits the series into train and test sets. Each step takes multiple points as inputs
:param data: an individual TS
:param fh: number of out of sample points
:param in_num: number of input points for the forecast
:return:
"""
train, test = data[:-fh], data[-(fh + in_num):]
x_train, y_train = train[:-1], np.roll(train, -in_num)[:-in_num]
x_test, y_test = train[-in_num:], np.roll(test, -in_num)[:-in_num]
# reshape input to be [samples, time steps, features] (N-NF samples, 1 time step, 1 feature)
x_train = np.reshape(x_train, (-1, 1))
x_test = np.reshape(x_test, (-1, 1))
temp_test = np.roll(x_test, -1)
temp_train = np.roll(x_train, -1)
for x in range(1, in_num):
x_train = np.concatenate((x_train[:-1], temp_train[:-1]), 1)
x_test = np.concatenate((x_test[:-1], temp_test[:-1]), 1)
temp_test = np.roll(temp_test, -1)[:-1]
temp_train = np.roll(temp_train, -1)[:-1]
return x_train, y_train, x_test, y_test
def rnn_bench(x_train, y_train, x_test, fh, input_size):
"""
Forecasts using 6 SimpleRNN nodes in the hidden layer and a Dense output layer
:param x_train: train data
:param y_train: target values for training
:param x_test: test data
:param fh: forecasting horizon
:param input_size: number of points used as input
:return:
"""
# reshape to match expected input
x_train = np.reshape(x_train, (-1, input_size, 1))
x_test = np.reshape(x_test, (-1, input_size, 1))
# create the model
model = Sequential([
SimpleRNN(6, input_shape=(input_size, 1), activation='linear',
use_bias=False, kernel_initializer='glorot_uniform',
recurrent_initializer='orthogonal', bias_initializer='zeros',
dropout=0.0, recurrent_dropout=0.0),
Dense(1, use_bias=True, activation='linear')
])
opt = rmsprop(lr=0.001)
model.compile(loss='mean_squared_error', optimizer=opt)
# fit the model to the training data
model.fit(x_train, y_train, epochs=100, batch_size=1, verbose=0)
# make predictions
y_hat_test = []
last_prediction = model.predict(x_test)[0]
for i in range(0, fh):
y_hat_test.append(last_prediction)
x_test[0] = np.roll(x_test[0], -1)
x_test[0, (len(x_test[0]) - 1)] = last_prediction
last_prediction = model.predict(x_test)[0]
return np.asarray(y_hat_test)
def mlp_bench(x_train, y_train, x_test, fh):
"""
Forecasts using a simple MLP which 6 nodes in the hidden layer
:param x_train: train input data
:param y_train: target values for training
:param x_test: test data
:param fh: forecasting horizon
:return:
"""
y_hat_test = []
model = MLPRegressor(hidden_layer_sizes=6, activation='identity', solver='adam',
max_iter=100, learning_rate='adaptive', learning_rate_init=0.001,
random_state=42)
model.fit(x_train, y_train)
last_prediction = model.predict(x_test)[0]
for i in range(0, fh):
y_hat_test.append(last_prediction)
x_test[0] = np.roll(x_test[0], -1)
x_test[0, (len(x_test[0]) - 1)] = last_prediction
last_prediction = model.predict(x_test)[0]
return np.asarray(y_hat_test)
def smape(a, b):
"""
Calculates sMAPE
:param a: actual values
:param b: predicted values
:return: sMAPE
"""
a = np.reshape(a, (-1,))
b = np.reshape(b, (-1,))
return np.mean(2.0 * np.abs(a - b) / (np.abs(a) + np.abs(b))).item()
def mase(insample, y_test, y_hat_test, freq):
"""
Calculates MAsE
:param insample: insample data
:param y_test: out of sample target values
:param y_hat_test: predicted values
:param freq: data frequency
:return:
"""
y_hat_naive = []
for i in range(freq, len(insample)):
y_hat_naive.append(insample[(i - freq)])
masep = np.mean(abs(insample[freq:] - y_hat_naive))
return np.mean(abs(y_test - y_hat_test)) / masep
def main():
"""
This script was updated because of errors pointed out by Professor Isidro Lloret Galiana.
These issues had no impact on the published results and were problems only because of the
example 100x20 array provided in this specific script. Below is the list of the changed lines:
-----------------------------
line changed from:
seasonality_in = deseasonalize(ts, freq)
to:
seasonality_in = deseasonalize(ts[:-fh], freq)
-----------------------------
line changed from:
a, b = detrend(ts)
to:
a, b = detrend(ts[:-fh])
-----------------------------
line changed from:
y_hat_test_MLP[i] = y_hat_test_MLP[i] + ((a * (len(ts) + i + 1)) + b)
y_hat_test_RNN[i] = y_hat_test_RNN[i] + ((a * (len(ts) + i + 1)) + b)
to:
y_hat_test_MLP[i] = y_hat_test_MLP[i] + ((a * (len(ts) - fh + i)) + b)
y_hat_test_RNN[i] = y_hat_test_RNN[i] + ((a * (len(ts) - fh + i)) + b)
-----------------------------
line changed from:
for i in range(len(ts), len(ts) + fh):
y_hat_test_MLP[i - len(ts)] = y_hat_test_MLP[i - len(ts)] * seasonality_in[i % freq] / 100
y_hat_test_RNN[i - len(ts)] = y_hat_test_RNN[i - len(ts)] * seasonality_in[i % freq] / 100
to:
for i in range(len(ts) - fh, len(ts)):
y_hat_test_MLP[i - (len(ts) - fh)] = y_hat_test_MLP[i - (len(ts) - fh)] * seasonality_in[i % freq] / 100
y_hat_test_RNN[i - (len(ts) - fh)] = y_hat_test_RNN[i - (len(ts) - fh)] * seasonality_in[i % freq] / 100
-----------------------------
"""
fh = 6 # forecasting horizon
freq = 1 # data frequency
in_size = 3 # number of points used as input for each forecast
err_MLP_sMAPE = []
err_MLP_MASE = []
err_RNN_sMAPE = []
err_RNN_MASE = []
# ===== In this example we produce forecasts for 100 randomly generated timeseries =====
data_all = np.array(np.random.random_integers(0, 100, (100, 20)), dtype=np.float32)
for i in range(0, 100):
for j in range(0, 20):
data_all[i, j] = j * 10 + data_all[i, j]
counter = 0
# ===== Main loop which goes through all timeseries =====
for j in range(len(data_all)):
ts = data_all[j, :]
# remove seasonality
seasonality_in = deseasonalize(ts, freq)
for i in range(0, len(ts)):
ts[i] = ts[i] * 100 / seasonality_in[i % freq]
# detrending
a, b = detrend(ts)
for i in range(0, len(ts)):
ts[i] = ts[i] - ((a * i) + b)
x_train, y_train, x_test, y_test = split_into_train_test(ts, in_size, fh)
# RNN benchmark - Produce forecasts
y_hat_test_RNN = np.reshape(rnn_bench(x_train, y_train, x_test, fh, in_size), (-1))
# MLP benchmark - Produce forecasts
y_hat_test_MLP = mlp_bench(x_train, y_train, x_test, fh)
for i in range(0, 29):
y_hat_test_MLP = np.vstack((y_hat_test_MLP, mlp_bench(x_train, y_train, x_test, fh)))
y_hat_test_MLP = np.median(y_hat_test_MLP, axis=0)
# add trend
for i in range(0, len(ts)):
ts[i] = ts[i] + ((a * i) + b)
for i in range(0, fh):
y_hat_test_MLP[i] = y_hat_test_MLP[i] + ((a * (len(ts) + i + 1)) + b)
y_hat_test_RNN[i] = y_hat_test_RNN[i] + ((a * (len(ts) + i + 1)) + b)
# add seasonality
for i in range(0, len(ts)):
ts[i] = ts[i] * seasonality_in[i % freq] / 100
for i in range(len(ts), len(ts) + fh):
y_hat_test_MLP[i - len(ts)] = y_hat_test_MLP[i - len(ts)] * seasonality_in[i % freq] / 100
y_hat_test_RNN[i - len(ts)] = y_hat_test_RNN[i - len(ts)] * seasonality_in[i % freq] / 100
# check if negative or extreme
for i in range(len(y_hat_test_MLP)):
if y_hat_test_MLP[i] < 0:
y_hat_test_MLP[i] = 0
if y_hat_test_RNN[i] < 0:
y_hat_test_RNN[i] = 0
if y_hat_test_MLP[i] > (1000 * max(ts)):
y_hat_test_MLP[i] = max(ts)
if y_hat_test_RNN[i] > (1000 * max(ts)):
y_hat_test_RNN[i] = max(ts)
x_train, y_train, x_test, y_test = split_into_train_test(ts, in_size, fh)
# Calculate errors
err_MLP_sMAPE.append(smape(y_test, y_hat_test_MLP))
err_RNN_sMAPE.append(smape(y_test, y_hat_test_RNN))
err_MLP_MASE.append(mase(ts[:-fh], y_test, y_hat_test_MLP, freq))
err_RNN_MASE.append(mase(ts[:-fh], y_test, y_hat_test_RNN, freq))
# memory handling
ker.clear_session()
tf.reset_default_graph()
gc.collect()
counter = counter + 1
print("-------------TS ID: ", counter, "-------------")
print("\n\n---------FINAL RESULTS---------")
print("=============sMAPE=============\n")
print("#### MLP ####\n", np.mean(err_MLP_sMAPE), "\n")
print("#### RNN ####\n", np.mean(err_RNN_sMAPE), "\n")
print("==============MASE=============")
print("#### MLP ####\n", np.mean(err_MLP_MASE), "\n")
print("#### RNN ####\n", np.mean(err_RNN_MASE), "\n")
main()