forked from NifTK/NiftyNet
-
Notifications
You must be signed in to change notification settings - Fork 0
/
setup.py
executable file
·100 lines (79 loc) · 2.59 KB
/
setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
# -*- coding: utf-8 -*-
import re
from packaging import version
from setuptools import setup, find_packages
import versioneer
from niftynet.utilities.versioning import get_niftynet_version
niftynet_version = get_niftynet_version()
# Regex for checking PEP 440 conformity
# https://www.python.org/dev/peps/pep-0440/#id79
pep440_regex = re.compile(
r"^\s*" + version.VERSION_PATTERN + r"\s*$",
re.VERBOSE | re.IGNORECASE,
)
# Check PEP 440 conformity
if niftynet_version is not None and \
pep440_regex.match(niftynet_version) is None:
raise ValueError('The version string {} does not conform to'
' PEP 440'.format(niftynet_version))
# Get the summary
description = 'An open-source convolutional neural networks platform' + \
' for research in medical image analysis and' + \
' image-guided therapy'
# Get the long description
with open('pip/long_description.rst') as f:
long_description = f.read()
setup(
name='NiftyNet',
version=niftynet_version,
cmdclass=versioneer.get_cmdclass(),
description=description,
long_description=long_description,
url='http://niftynet.io/',
author='NiftyNet Consortium',
author_email='[email protected]',
license='Apache 2.0',
classifiers=[
'Development Status :: 3 - Alpha',
'Intended Audience :: Developers',
'Intended Audience :: Healthcare Industry',
'Intended Audience :: Science/Research',
'License :: OSI Approved :: Apache Software License',
'Programming Language :: Python',
'Programming Language :: Python :: 2',
'Programming Language :: Python :: 3',
'Topic :: Scientific/Engineering :: Artificial Intelligence',
'Topic :: Scientific/Engineering :: Image Recognition',
'Topic :: Scientific/Engineering :: Medical Science Apps.',
],
packages=find_packages(
exclude=[
'pip',
'config',
'data',
'demos',
'tests',
]
),
install_requires=[
'six>=1.10',
'nibabel>=2.1.0',
'numpy>=1.12',
'scipy>=0.18',
'configparser',
'pandas',
'pillow',
'blinker'
],
entry_points={
'console_scripts': [
'net_segment=niftynet:main',
'net_download=niftynet.utilities.download:main',
'net_run=niftynet:main',
'net_regress=niftynet:main',
'net_gan=niftynet:main',
'net_autoencoder=niftynet:main',
'net_classify=niftynet:main',
],
},
)