-
Notifications
You must be signed in to change notification settings - Fork 1
/
single.py
executable file
·129 lines (103 loc) · 4.99 KB
/
single.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
"""Example running GMemN2N on a single bAbI task.
Download tasks from facebook.ai/babi """
from __future__ import absolute_import
from __future__ import print_function
from data_utils import load_task, vectorize_data
from sklearn import cross_validation, metrics
from gmemn2n import GMemN2N
from itertools import chain
from six.moves import range, reduce
import tensorflow as tf
import numpy as np
tf.flags.DEFINE_float("learning_rate", 0.01, "Learning rate for SGD.")
tf.flags.DEFINE_float("anneal_rate", 25, "Number of epochs between halving the learnign rate.")
tf.flags.DEFINE_float("anneal_stop_epoch", 100, "Epoch number to end annealed lr schedule.")
tf.flags.DEFINE_float("max_grad_norm", 40.0, "Clip gradients to this norm.")
tf.flags.DEFINE_integer("evaluation_interval", 10, "Evaluate and print results every x epochs")
tf.flags.DEFINE_integer("batch_size", 32, "Batch size for training.")
tf.flags.DEFINE_integer("hops", 3, "Number of hops in the Memory Network.")
tf.flags.DEFINE_integer("epochs", 100, "Number of epochs to train for.")
tf.flags.DEFINE_integer("embedding_size", 20, "Embedding size for embedding matrices.")
tf.flags.DEFINE_integer("memory_size", 50, "Maximum size of memory.")
tf.flags.DEFINE_integer("task_id", 1, "bAbI task id, 1 <= id <= 20")
tf.flags.DEFINE_integer("random_state", None, "Random state.")
tf.flags.DEFINE_string("data_dir", "data/tasks_1-20_v1-2/en/", "Directory containing bAbI tasks")
FLAGS = tf.flags.FLAGS
print("Started Task:", FLAGS.task_id)
# task data
train, test = load_task(FLAGS.data_dir, FLAGS.task_id)
data = train + test
vocab = sorted(reduce(lambda x, y: x | y, (set(list(chain.from_iterable(s)) + q + a) for s, q, a in data)))
word_idx = dict((c, i + 1) for i, c in enumerate(vocab))
max_story_size = max(map(len, (s for s, _, _ in data)))
mean_story_size = int(np.mean([ len(s) for s, _, _ in data ]))
sentence_size = max(map(len, chain.from_iterable(s for s, _, _ in data)))
query_size = max(map(len, (q for _, q, _ in data)))
memory_size = min(FLAGS.memory_size, max_story_size)
# Add time words/indexes
for i in range(memory_size):
word_idx['time{}'.format(i+1)] = 'time{}'.format(i+1)
vocab_size = len(word_idx) + 1 # +1 for nil word
sentence_size = max(query_size, sentence_size) # for the position
sentence_size += 1 # +1 for time words
print("Longest sentence length", sentence_size)
print("Longest story length", max_story_size)
print("Average story length", mean_story_size)
# train/validation/test sets
S, Q, A = vectorize_data(train, word_idx, sentence_size, memory_size)
trainS, valS, trainQ, valQ, trainA, valA = cross_validation.train_test_split(S, Q, A, test_size=.1, random_state=FLAGS.random_state)
testS, testQ, testA = vectorize_data(test, word_idx, sentence_size, memory_size)
print(testS[0])
print("Training set shape", trainS.shape)
# params
n_train = trainS.shape[0]
n_test = testS.shape[0]
n_val = valS.shape[0]
print("Training Size", n_train)
print("Validation Size", n_val)
print("Testing Size", n_test)
train_labels = np.argmax(trainA, axis=1)
test_labels = np.argmax(testA, axis=1)
val_labels = np.argmax(valA, axis=1)
tf.set_random_seed(FLAGS.random_state)
batch_size = FLAGS.batch_size
batches = zip(range(0, n_train-batch_size, batch_size), range(batch_size, n_train, batch_size))
batches = [(start, end) for start, end in batches]
with tf.Session() as sess:
model = GMemN2N(batch_size, vocab_size, sentence_size, memory_size, FLAGS.embedding_size, session=sess,
hops=FLAGS.hops, max_grad_norm=FLAGS.max_grad_norm)
for t in range(1, FLAGS.epochs+1):
# Stepped learning rate
if t - 1 <= FLAGS.anneal_stop_epoch:
anneal = 2.0 ** ((t - 1) // FLAGS.anneal_rate)
else:
anneal = 2.0 ** (FLAGS.anneal_stop_epoch // FLAGS.anneal_rate)
lr = FLAGS.learning_rate / anneal
np.random.shuffle(batches)
total_cost = 0.0
for start, end in batches:
s = trainS[start:end]
q = trainQ[start:end]
a = trainA[start:end]
cost_t = model.batch_fit(s, q, a, lr)
total_cost += cost_t
if t % FLAGS.evaluation_interval == 0:
train_preds = []
for start in range(0, n_train, batch_size):
end = start + batch_size
s = trainS[start:end]
q = trainQ[start:end]
pred = model.predict(s, q)
train_preds += list(pred)
val_preds = model.predict(valS, valQ)
train_acc = metrics.accuracy_score(np.array(train_preds), train_labels)
val_acc = metrics.accuracy_score(val_preds, val_labels)
print('-----------------------')
print('Epoch', t)
print('Total Cost:', total_cost)
print('Training Accuracy:', train_acc)
print('Validation Accuracy:', val_acc)
print('-----------------------')
test_preds = model.predict(testS, testQ)
test_acc = metrics.accuracy_score(test_preds, test_labels)
print("Testing Accuracy:", test_acc)