You signed in with another tab or window. Reload to refresh your session.You signed out in another tab or window. Reload to refresh your session.You switched accounts on another tab or window. Reload to refresh your session.Dismiss alert
When i run this command
!python -m object_detection.model_main
--pipeline_config_path=$DATA_PATH/pipeline.config
--model_dir=$OUTPUT_PATH
--num_train_steps=$NUM_TRAIN_STEPS
--num_eval_steps=100
I get this error:
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1.
W0331 07:05:09.392434 140537817827200 model_lib.py:801] Forced number of epochs for all eval validations to be 1.
INFO:tensorflow:Maybe overwriting train_steps: 500
I0331 07:05:09.392771 140537817827200 config_util.py:552] Maybe overwriting train_steps: 500
INFO:tensorflow:Maybe overwriting use_bfloat16: False
I0331 07:05:09.392954 140537817827200 config_util.py:552] Maybe overwriting use_bfloat16: False
INFO:tensorflow:Maybe overwriting sample_1_of_n_eval_examples: 1
I0331 07:05:09.393109 140537817827200 config_util.py:552] Maybe overwriting sample_1_of_n_eval_examples: 1
INFO:tensorflow:Maybe overwriting eval_num_epochs: 1
I0331 07:05:09.393283 140537817827200 config_util.py:552] Maybe overwriting eval_num_epochs: 1
WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1.
W0331 07:05:09.393471 140537817827200 model_lib.py:817] Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1.
INFO:tensorflow:create_estimator_and_inputs: use_tpu False, export_to_tpu None
I0331 07:05:09.393648 140537817827200 model_lib.py:852] create_estimator_and_inputs: use_tpu False, export_to_tpu None
INFO:tensorflow:Using config: {'_model_dir': '/content/output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fd10a9412d0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
I0331 07:05:09.394231 140537817827200 estimator.py:212] Using config: {'_model_dir': '/content/output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fd10a9412d0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:Estimator's model_fn (<function create_model_fn..model_fn at 0x7fd10a92f7a0>) includes params argument, but params are not passed to Estimator.
W0331 07:05:09.394517 140537817827200 model_fn.py:630] Estimator's model_fn (<function create_model_fn..model_fn at 0x7fd10a92f7a0>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Not using Distribute Coordinator.
I0331 07:05:09.395075 140537817827200 estimator_training.py:186] Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
I0331 07:05:09.395325 140537817827200 training.py:612] Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
I0331 07:05:09.395752 140537817827200 training.py:700] Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From /tensorflow-1.15.2/python3.7/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
W0331 07:05:09.401718 140537817827200 deprecation.py:323] From /tensorflow-1.15.2/python3.7/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Reading unweighted datasets: ['/content/data/train.record']
I0331 07:05:09.431689 140537817827200 dataset_builder.py:148] Reading unweighted datasets: ['/content/data/train.record']
INFO:tensorflow:Reading record datasets for input file: ['/content/data/train.record']
I0331 07:05:09.432735 140537817827200 dataset_builder.py:77] Reading record datasets for input file: ['/content/data/train.record']
INFO:tensorflow:Number of filenames to read: 1
I0331 07:05:09.432889 140537817827200 dataset_builder.py:78] Number of filenames to read: 1
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
W0331 07:05:09.433032 140537817827200 dataset_builder.py:86] num_readers has been reduced to 1 to match input file shards.
WARNING:tensorflow:From /content/models/research/object_detection/builders/dataset_builder.py:103: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE) instead. If sloppy execution is desired, use tf.data.Options.experimental_determinstic.
W0331 07:05:09.439119 140537817827200 deprecation.py:323] From /content/models/research/object_detection/builders/dataset_builder.py:103: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE) instead. If sloppy execution is desired, use tf.data.Options.experimental_determinstic.
WARNING:tensorflow:From /content/models/research/object_detection/builders/dataset_builder.py:222: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.map() W0331 07:05:09.460939 140537817827200 deprecation.py:323] From /content/models/research/object_detection/builders/dataset_builder.py:222: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.Dataset.map()
WARNING:tensorflow:Entity <bound method TfExampleDecoder.decode of <object_detection.data_decoders.tf_example_decoder.TfExampleDecoder object at 0x7fd10a8d9050>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10) and attach the full output. Cause: module 'gast' has no attribute 'Index'
W0331 07:05:09.496219 140537817827200 ag_logging.py:146] Entity <bound method TfExampleDecoder.decode of <object_detection.data_decoders.tf_example_decoder.TfExampleDecoder object at 0x7fd10a8d9050>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10) and attach the full output. Cause: module 'gast' has no attribute 'Index'
Traceback (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/content/models/research/object_detection/model_main.py", line 108, in
tf.app.run()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/platform/app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 312, in run
_run_main(main, args)
File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 258, in _run_main
sys.exit(main(argv))
File "/content/models/research/object_detection/model_main.py", line 104, in main
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 473, in train_and_evaluate
return executor.run()
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 613, in run
return self.run_local()
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 714, in run_local
saving_listeners=saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 370, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1161, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1188, in _train_model_default
input_fn, ModeKeys.TRAIN))
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1025, in _get_features_and_labels_from_input_fn
self._call_input_fn(input_fn, mode))
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1116, in _call_input_fn
return input_fn(**kwargs)
File "/content/models/research/object_detection/inputs.py", line 711, in _train_input_fn
params=params)
File "/content/models/research/object_detection/inputs.py", line 851, in train_input
reduce_to_frame_fn=reduce_to_frame_fn)
File "/content/models/research/object_detection/builders/dataset_builder.py", line 237, in build
input_reader_config)
File "/content/models/research/object_detection/builders/dataset_builder.py", line 222, in dataset_map_fn
fn_to_map, num_parallel_calls=num_parallel_calls)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/util/deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 1950, in map_with_legacy_function
use_legacy_function=True))
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 3472, in init
use_legacy_function=use_legacy_function)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2689, in init
self._function.add_to_graph(ops.get_default_graph())
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 545, in add_to_graph
self._create_definition_if_needed()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 377, in _create_definition_if_needed
self._create_definition_if_needed_impl()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 408, in _create_definition_if_needed_impl
capture_resource_var_by_value=self._capture_resource_var_by_value)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 944, in func_graph_from_py_func
outputs = func(*func_graph.inputs)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2681, in wrapper_fn
ret = _wrapper_helper(*args)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2652, in _wrapper_helper
ret = autograph.tf_convert(func, ag_ctx)(*nested_args)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/autograph/impl/api.py", line 237, in wrapper
raise e.ag_error_metadata.to_exception(e)
NotImplementedError: in converted code:
When i run this command
!python -m object_detection.model_main
--pipeline_config_path=$DATA_PATH/pipeline.config
--model_dir=$OUTPUT_PATH
--num_train_steps=$NUM_TRAIN_STEPS
--num_eval_steps=100
I get this error:
WARNING:tensorflow:Forced number of epochs for all eval validations to be 1.
W0331 07:05:09.392434 140537817827200 model_lib.py:801] Forced number of epochs for all eval validations to be 1.
INFO:tensorflow:Maybe overwriting train_steps: 500
I0331 07:05:09.392771 140537817827200 config_util.py:552] Maybe overwriting train_steps: 500
INFO:tensorflow:Maybe overwriting use_bfloat16: False
I0331 07:05:09.392954 140537817827200 config_util.py:552] Maybe overwriting use_bfloat16: False
INFO:tensorflow:Maybe overwriting sample_1_of_n_eval_examples: 1
I0331 07:05:09.393109 140537817827200 config_util.py:552] Maybe overwriting sample_1_of_n_eval_examples: 1
INFO:tensorflow:Maybe overwriting eval_num_epochs: 1
I0331 07:05:09.393283 140537817827200 config_util.py:552] Maybe overwriting eval_num_epochs: 1
WARNING:tensorflow:Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1.
W0331 07:05:09.393471 140537817827200 model_lib.py:817] Expected number of evaluation epochs is 1, but instead encountered eval_on_train_input_config.num_epochs = 0. Overwriting num_epochs to 1.
INFO:tensorflow:create_estimator_and_inputs: use_tpu False, export_to_tpu None
I0331 07:05:09.393648 140537817827200 model_lib.py:852] create_estimator_and_inputs: use_tpu False, export_to_tpu None
INFO:tensorflow:Using config: {'_model_dir': '/content/output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fd10a9412d0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
I0331 07:05:09.394231 140537817827200 estimator.py:212] Using config: {'_model_dir': '/content/output', '_tf_random_seed': None, '_save_summary_steps': 100, '_save_checkpoints_steps': None, '_save_checkpoints_secs': 600, '_session_config': allow_soft_placement: true
graph_options {
rewrite_options {
meta_optimizer_iterations: ONE
}
}
, '_keep_checkpoint_max': 5, '_keep_checkpoint_every_n_hours': 10000, '_log_step_count_steps': 100, '_train_distribute': None, '_device_fn': None, '_protocol': None, '_eval_distribute': None, '_experimental_distribute': None, '_experimental_max_worker_delay_secs': None, '_session_creation_timeout_secs': 7200, '_service': None, '_cluster_spec': <tensorflow.python.training.server_lib.ClusterSpec object at 0x7fd10a9412d0>, '_task_type': 'worker', '_task_id': 0, '_global_id_in_cluster': 0, '_master': '', '_evaluation_master': '', '_is_chief': True, '_num_ps_replicas': 0, '_num_worker_replicas': 1}
WARNING:tensorflow:Estimator's model_fn (<function create_model_fn..model_fn at 0x7fd10a92f7a0>) includes params argument, but params are not passed to Estimator.
W0331 07:05:09.394517 140537817827200 model_fn.py:630] Estimator's model_fn (<function create_model_fn..model_fn at 0x7fd10a92f7a0>) includes params argument, but params are not passed to Estimator.
INFO:tensorflow:Not using Distribute Coordinator.
I0331 07:05:09.395075 140537817827200 estimator_training.py:186] Not using Distribute Coordinator.
INFO:tensorflow:Running training and evaluation locally (non-distributed).
I0331 07:05:09.395325 140537817827200 training.py:612] Running training and evaluation locally (non-distributed).
INFO:tensorflow:Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
I0331 07:05:09.395752 140537817827200 training.py:700] Start train and evaluate loop. The evaluate will happen after every checkpoint. Checkpoint frequency is determined based on RunConfig arguments: save_checkpoints_steps None or save_checkpoints_secs 600.
WARNING:tensorflow:From /tensorflow-1.15.2/python3.7/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
W0331 07:05:09.401718 140537817827200 deprecation.py:323] From /tensorflow-1.15.2/python3.7/tensorflow_core/python/training/training_util.py:236: Variable.initialized_value (from tensorflow.python.ops.variables) is deprecated and will be removed in a future version.
Instructions for updating:
Use Variable.read_value. Variables in 2.X are initialized automatically both in eager and graph (inside tf.defun) contexts.
INFO:tensorflow:Reading unweighted datasets: ['/content/data/train.record']
I0331 07:05:09.431689 140537817827200 dataset_builder.py:148] Reading unweighted datasets: ['/content/data/train.record']
INFO:tensorflow:Reading record datasets for input file: ['/content/data/train.record']
I0331 07:05:09.432735 140537817827200 dataset_builder.py:77] Reading record datasets for input file: ['/content/data/train.record']
INFO:tensorflow:Number of filenames to read: 1
I0331 07:05:09.432889 140537817827200 dataset_builder.py:78] Number of filenames to read: 1
WARNING:tensorflow:num_readers has been reduced to 1 to match input file shards.
W0331 07:05:09.433032 140537817827200 dataset_builder.py:86] num_readers has been reduced to 1 to match input file shards.
WARNING:tensorflow:From /content/models/research/object_detection/builders/dataset_builder.py:103: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE) instead. If sloppy execution is desired, use tf.data.Options.experimental_determinstic.
W0331 07:05:09.439119 140537817827200 deprecation.py:323] From /content/models/research/object_detection/builders/dataset_builder.py:103: parallel_interleave (from tensorflow.python.data.experimental.ops.interleave_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.interleave(map_func, cycle_length, block_length, num_parallel_calls=tf.data.experimental.AUTOTUNE) instead. If sloppy execution is desired, use tf.data.Options.experimental_determinstic.
WARNING:tensorflow:From /content/models/research/object_detection/builders/dataset_builder.py:222: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version.
Instructions for updating:
Use tf.data.Dataset.map() W0331 07:05:09.460939 140537817827200 deprecation.py:323] From /content/models/research/object_detection/builders/dataset_builder.py:222: DatasetV1.map_with_legacy_function (from tensorflow.python.data.ops.dataset_ops) is deprecated and will be removed in a future version. Instructions for updating: Use tf.data.Dataset.map()
WARNING:tensorflow:Entity <bound method TfExampleDecoder.decode of <object_detection.data_decoders.tf_example_decoder.TfExampleDecoder object at 0x7fd10a8d9050>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10) and attach the full output. Cause: module 'gast' has no attribute 'Index'
W0331 07:05:09.496219 140537817827200 ag_logging.py:146] Entity <bound method TfExampleDecoder.decode of <object_detection.data_decoders.tf_example_decoder.TfExampleDecoder object at 0x7fd10a8d9050>> could not be transformed and will be executed as-is. Please report this to the AutoGraph team. When filing the bug, set the verbosity to 10 (on Linux, export AUTOGRAPH_VERBOSITY=10) and attach the full output. Cause: module 'gast' has no attribute 'Index'
Traceback (most recent call last):
File "/usr/lib/python3.7/runpy.py", line 193, in _run_module_as_main
"main", mod_spec)
File "/usr/lib/python3.7/runpy.py", line 85, in _run_code
exec(code, run_globals)
File "/content/models/research/object_detection/model_main.py", line 108, in
tf.app.run()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/platform/app.py", line 40, in run
_run(main=main, argv=argv, flags_parser=_parse_flags_tolerate_undef)
File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 312, in run
_run_main(main, args)
File "/usr/local/lib/python3.7/dist-packages/absl/app.py", line 258, in _run_main
sys.exit(main(argv))
File "/content/models/research/object_detection/model_main.py", line 104, in main
tf.estimator.train_and_evaluate(estimator, train_spec, eval_specs[0])
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 473, in train_and_evaluate
return executor.run()
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 613, in run
return self.run_local()
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/training.py", line 714, in run_local
saving_listeners=saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 370, in train
loss = self._train_model(input_fn, hooks, saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1161, in _train_model
return self._train_model_default(input_fn, hooks, saving_listeners)
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1188, in _train_model_default
input_fn, ModeKeys.TRAIN))
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1025, in _get_features_and_labels_from_input_fn
self._call_input_fn(input_fn, mode))
File "/tensorflow-1.15.2/python3.7/tensorflow_estimator/python/estimator/estimator.py", line 1116, in _call_input_fn
return input_fn(**kwargs)
File "/content/models/research/object_detection/inputs.py", line 711, in _train_input_fn
params=params)
File "/content/models/research/object_detection/inputs.py", line 851, in train_input
reduce_to_frame_fn=reduce_to_frame_fn)
File "/content/models/research/object_detection/builders/dataset_builder.py", line 237, in build
input_reader_config)
File "/content/models/research/object_detection/builders/dataset_builder.py", line 222, in dataset_map_fn
fn_to_map, num_parallel_calls=num_parallel_calls)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/util/deprecation.py", line 324, in new_func
return func(*args, **kwargs)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 1950, in map_with_legacy_function
use_legacy_function=True))
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 3472, in init
use_legacy_function=use_legacy_function)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2689, in init
self._function.add_to_graph(ops.get_default_graph())
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 545, in add_to_graph
self._create_definition_if_needed()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 377, in _create_definition_if_needed
self._create_definition_if_needed_impl()
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 408, in _create_definition_if_needed_impl
capture_resource_var_by_value=self._capture_resource_var_by_value)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/function.py", line 944, in func_graph_from_py_func
outputs = func(*func_graph.inputs)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2681, in wrapper_fn
ret = _wrapper_helper(*args)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/data/ops/dataset_ops.py", line 2652, in _wrapper_helper
ret = autograph.tf_convert(func, ag_ctx)(*nested_args)
File "/tensorflow-1.15.2/python3.7/tensorflow_core/python/autograph/impl/api.py", line 237, in wrapper
raise e.ag_error_metadata.to_exception(e)
NotImplementedError: in converted code:
/content/models/research/object_detection/data_decoders/tf_example_decoder.py:509 decode
default_groundtruth_weights)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/util/deprecation.py:507 new_func
return func(*args, **kwargs)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/ops/control_flow_ops.py:1235 cond
orig_res_f, res_f = context_f.BuildCondBranch(false_fn)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/ops/control_flow_ops.py:1061 BuildCondBranch
original_result = fn()
/content/models/research/object_detection/data_decoders/tf_example_decoder.py:502 default_groundtruth_weights
dtype=tf.float32)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/ops/array_ops.py:2560 ones
output = _constant_if_small(one, shape, dtype, name)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/ops/array_ops.py:2295 _constant_if_small
if np.prod(shape) < 1000:
<array_function internals>:6 prod
/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:3052 prod
keepdims=keepdims, initial=initial, where=where)
/usr/local/lib/python3.7/dist-packages/numpy/core/fromnumeric.py:86 _wrapreduction
return ufunc.reduce(obj, axis, dtype, out, **passkwargs)
/tensorflow-1.15.2/python3.7/tensorflow_core/python/framework/ops.py:736 array
" array.".format(self.name))
NotImplementedError: Cannot convert a symbolic Tensor (cond_2/strided_slice:0) to a numpy array.
The text was updated successfully, but these errors were encountered: