forked from klauscc/VindLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
trainer.py
321 lines (269 loc) · 11.8 KB
/
trainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import datetime
import json
import logging
import os.path as osp
import time
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from dataset import MetaLoader, create_dataset, create_loader, create_sampler
from models.vindlu import VindLU
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import get_media_types, setup_model
from utils.basic_utils import (MetricLogger, SmoothedValue,
remove_files_if_exist, setup_seed)
from utils.config_utils import setup_main
from utils.distributed import get_rank, get_world_size, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
class PretrainTrainer(object):
"""trainer for pretraining."""
def __init__(self, config):
super(PretrainTrainer, self).__init__()
self.config = config
self.is_pretrain = config.mode == "pt"
self.setup()
self.has_decoder = False
if config.mode in ["ret", "pt"]:
self.evaluation_fn = evaluation_wrapper
self.model_cls = VindLU
elif config.mode == "vqa":
raise NotImplementedError("not implemented")
else:
raise NotImplementedError("not implemented")
self.build_dataloaders()
self.build_model()
def setup(self):
"""setup for train."""
config = self.config
if is_main_process() and config.wandb.enable:
self.wandb_run = setup_wandb(config)
else:
self.wandb_run = None
setup_seed(config.seed + get_rank())
self.device = torch.device(config.device)
@torch.no_grad()
def evaluate(self, epoch=0):
"""evaluate the model.
Args:
model (nn.Module): The model to evaluate.
loader (DataLoader): dataloader.
tokenizer (None): tokenizer.
prefix (str): The str prepended to the keys of return dict.
Returns: dict. The value is the corresponding evaluation results for the key.
"""
eval_res = {}
for test_name, test_loader in self.test_name2loaders.items():
if test_name not in self.config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {self.config.test_types}"
)
continue
with torch.cuda.amp.autocast(enabled=self.config.fp16):
res = self.evaluation_fn(
self.model_without_ddp,
test_loader,
self.tokenizer,
self.device,
self.config,
test_name,
)
eval_res.update(res)
df = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{df.transpose().to_string(max_cols=30)}")
return eval_res
def build_model(self):
"""TODO: Docstring for build_model.
Returns: TODO
"""
(
self.model,
self.model_without_ddp,
self.optimizer,
self.scheduler,
self.scaler,
self.tokenizer,
self.start_epoch,
self.global_step,
) = setup_model(
self.config,
model_cls=self.model_cls,
has_decoder=self.has_decoder,
pretrain=self.is_pretrain,
find_unused_parameters=True,
)
def build_dataloaders(self):
config = self.config
mode = config.mode
# train datasets, create a list of data loaders
logger.info(f"Creating dataset for {mode}")
train_datasets = create_dataset(f"{mode}_train", config)
media_types = get_media_types(train_datasets)
if config.distributed:
num_tasks = get_world_size()
global_rank = get_rank()
samplers = create_sampler(
train_datasets, [True] * len(media_types), num_tasks, global_rank
)
else:
samplers = [None] * len(media_types)
train_loaders = create_loader(
train_datasets,
samplers,
batch_size=[config.inputs.batch_size[k] for k in media_types],
num_workers=[config.num_workers] * len(media_types),
is_trains=[True] * len(media_types),
collate_fns=[None] * len(media_types),
) # [0]
# test datasets, a mapping from dataset name to data loader
test_datasets, test_dataset_names = create_dataset(f"{mode}_eval", config)
test_loaders = create_loader(
test_datasets,
[None] * len(test_datasets),
batch_size=[config.inputs.batch_size_test[d.media_type] for d in test_datasets],
num_workers=[config.num_workers] * len(test_datasets),
is_trains=[False] * len(test_datasets),
collate_fns=[None] * len(test_datasets),
)
test_name2loaders = {k: v for k, v in zip(test_dataset_names, test_loaders)}
self.train_loaders = train_loaders
self.test_name2loaders = test_name2loaders
self.media_types = media_types
num_steps_per_epoch = sum(len(d) for d in self.train_loaders)
# update config
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = (
num_steps_per_epoch * config.scheduler.warmup_epochs
)
self.config = config
def train(self):
"""train the model."""
config = self.config
# set cudnn.benchmark=True only when input size is fixed
# https://discuss.pytorch.org/t/what-does-torch-backends-cudnn-benchmark-do/5936/3
cudnn.benchmark = len(self.media_types) == 1
if is_main_process() and config.wandb.enable:
wandb.watch(self.model)
best = 0
best_epoch = 0
logger.info("Start training")
start_time = time.time()
global_step = self.global_step
for epoch in range(self.start_epoch, config.scheduler.epochs):
# train one epoch
global_step = self.train_one_epoch(epoch, global_step)
# evaluation.
eval_res = self.evaluate(epoch)
if is_main_process():
# log to wandb
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
if config.model.multimodal.enable:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else:
cur_r_mean = eval_res[config.stop_key.replace("/", "_emb/")]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
with open(osp.join(config.output_dir, "eval_res_latest.json"), "w") as f:
json.dump(eval_res, f)
# eval_res.to_json(osp.join(config.output_dir, "eval_res_latest.json"))
save_obj = {
"model": self.model_without_ddp.state_dict(),
"optimizer": self.optimizer.state_dict(),
"scheduler": self.scheduler.state_dict(),
"scaler": self.scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
torch.save(save_obj, osp.join(config.output_dir, f"ckpt_{epoch:02d}.pth"))
if cur_r_mean > best:
torch.save(save_obj, osp.join(config.output_dir, "ckpt_best.pth"))
eval_file = "eval_res_best.json"
# eval_res.to_json(osp.join(config.output_dir, eval_file))
with open(osp.join(config.output_dir, eval_file), "w") as f:
json.dump(eval_res, f)
best = cur_r_mean
best_epoch = epoch
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
self.wandb_run.finish()
def train_one_epoch(self, epoch, global_step):
config = self.config
self.model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=100, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=100, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
media_types = get_media_types(self.train_loaders)
for name in loss_names:
for m in media_types:
metric_logger.add_meter(
f"{m}-{name}", SmoothedValue(window=100, fmt="{value:.4f}")
)
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in self.train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader(name2loader=dict(list(zip(media_types, self.train_loaders))))
model_without_ddp = self.model.module if config.distributed else self.model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(self.device, non_blocking=True)
idx = idx.to(self.device, non_blocking=True)
text_input = self.tokenizer(
text,
padding="max_length",
truncation=True,
max_length=config.inputs.max_txt_l[media_type],
return_tensors="pt",
).to(self.device)
with torch.cuda.amp.autocast(enabled=config.fp16):
loss_dict = self.model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
self.optimizer.zero_grad()
self.scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
self.scaler.unscale_(self.optimizer)
torch.nn.utils.clip_grad_norm_(
self.model.parameters(), config.optimizer.max_grad_norm
)
self.scaler.step(self.optimizer)
self.scaler.update()
self.scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=self.optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and global_step % 2 == 0:
logger.info("debug mode, break training loop")
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged stats: {metric_logger.global_avg()}")
return global_step
if __name__ == "__main__":
cfg = setup_main()
trainer = PretrainTrainer(cfg)
if cfg.evaluate:
trainer.evaluate()
else:
trainer.train()