forked from klauscc/VindLU
-
Notifications
You must be signed in to change notification settings - Fork 0
/
retrieval.py
250 lines (211 loc) · 8.53 KB
/
retrieval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
import copy
import datetime
import logging
import os
import time
from os.path import join
import pandas as pd
import torch
import torch.backends.cudnn as cudnn
import torch.distributed as dist
import wandb
from dataset import MetaLoader
from models.vindlu import VindLU
from tasks.pretrain import setup_dataloaders
from tasks.retrieval_utils import evaluation_wrapper
from tasks.shared_utils import setup_model
from utils.basic_utils import MetricLogger, SmoothedValue, setup_seed
from utils.config import Config
from utils.config_utils import setup_main
from utils.distributed import get_rank, is_main_process
from utils.logger import log_dict_to_wandb, setup_wandb
logger = logging.getLogger(__name__)
def train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
):
model.train()
metric_logger = MetricLogger(delimiter=" ")
metric_logger.add_meter("lr", SmoothedValue(window=1, fmt="{value:.6f}"))
metric_logger.add_meter("temperature", SmoothedValue(window=1, fmt="{value:.4f}"))
loss_names = ["loss_" + k for k, v in config.criterion.loss_weight.items() if v != 0]
media_types = [loader.dataset.media_type for loader in train_loaders]
for name in loss_names:
for m in media_types:
metric_logger.add_meter(f"{m}-{name}", SmoothedValue(window=1, fmt="{value:.4f}"))
header = f"Train Epoch: [{epoch}]"
log_freq = config.log_freq
if config.distributed:
for d in train_loaders:
d.sampler.set_epoch(epoch)
train_loader = MetaLoader(name2loader=dict(list(zip(media_types, train_loaders))))
model_without_ddp = model.module if config.distributed else model
iterator = metric_logger.log_every(train_loader, log_freq, header)
for i, (media_type, (image, text, idx)) in enumerate(iterator):
image = image.to(device, non_blocking=True)
idx = idx.to(device, non_blocking=True)
text_input = tokenizer(
text,
padding="max_length",
truncation=True,
max_length=config.max_txt_l,
return_tensors="pt",
).to(device)
with torch.cuda.amp.autocast(enabled=config.fp16):
loss_dict = model(image, text_input, idx=idx)
loss = sum(loss_dict.values())
optimizer.zero_grad()
scaler.scale(loss).backward()
if config.optimizer.max_grad_norm > 0:
scaler.unscale_(optimizer)
torch.nn.utils.clip_grad_norm_(model.parameters(), config.optimizer.max_grad_norm)
scaler.step(optimizer)
scaler.update()
scheduler.step()
# logging
for name in loss_names:
value = loss_dict[name]
value = value if isinstance(value, float) else value.item()
metric_logger.update(**{f"{media_type}-{name}": value})
metric_logger.update(lr=optimizer.param_groups[0]["lr"])
metric_logger.update(temperature=model_without_ddp.temp.item())
if is_main_process() and config.wandb.enable and global_step % log_freq == 0:
logs = metric_logger.get_global_avg_dict()
log_dict_to_wandb(logs, step=global_step, prefix="train/")
global_step += 1
if config.debug and (i + 1) % 5 == 0:
break
# gather the stats from all processes
metric_logger.synchronize_between_processes()
logger.info(f"Averaged train stats: {metric_logger.global_avg()}")
return global_step
def main(config):
if is_main_process() and config.wandb.enable:
run = setup_wandb(config)
logger.info(f"config: \n{config}")
logger.info(f"train_file: {config.train_file}")
setup_seed(config.seed + get_rank())
device = torch.device(config.device)
cudnn.benchmark = True
train_loaders, test_name2loaders, train_media_types = setup_dataloaders(config, mode="ret")
num_steps_per_epoch = sum(len(d) for d in train_loaders)
config.scheduler.num_training_steps = num_steps_per_epoch * config.scheduler.epochs
config.scheduler.num_warmup_steps = num_steps_per_epoch * config.scheduler.warmup_epochs
(
model,
model_without_ddp,
optimizer,
scheduler,
scaler,
tokenizer,
start_epoch,
global_step,
) = setup_model(
config,
model_cls=VindLU,
has_decoder=False,
pretrain=False,
find_unused_parameters=True,
)
if is_main_process() and config.wandb.enable:
wandb.watch(model)
best = 0
best_epoch = 0
logger.info("Start " + "evaluation" if config.evaluate else "training")
start_time = time.time()
for epoch in range(start_epoch, config.scheduler.epochs):
if not config.evaluate:
global_step = train(
model,
train_loaders,
optimizer,
tokenizer,
epoch,
global_step,
device,
scheduler,
scaler,
config,
)
with torch.cuda.amp.autocast(enabled=config.fp16):
eval_res = {}
for test_name, test_loader in test_name2loaders.items():
if test_name not in config.test_types:
logger.info(
f"Skip eval {test_name} split. All test_types {config.test_types}"
)
continue
res = evaluation_wrapper(
model_without_ddp, test_loader, tokenizer, device, config, prefix=test_name
)
eval_res.update(res)
if is_main_process():
if config.wandb.enable:
for p, v in eval_res.items():
log_dict_to_wandb(v, step=global_step, prefix=p)
if config.stop_key is not None and config.stop_key in eval_res:
if config.model.multimodal.enable:
cur_r_mean = eval_res[config.stop_key]["r_mean"]
else:
cur_r_mean = eval_res[config.stop_key.replace("/", "_emb/")]["r_mean"]
else: # None
cur_r_mean = best + 1 # save the last as the best
eval_res = pd.DataFrame(eval_res)
logger.info(f"Epoch {epoch}")
logger.info(f"\n{eval_res.transpose().to_string(max_cols=30)}")
eval_res.to_json(join(config.output_dir, "eval_res_latest.json"))
if not config.evaluate and cur_r_mean > best:
save_obj = {
"model": model_without_ddp.state_dict(),
"optimizer": optimizer.state_dict(),
"scheduler": scheduler.state_dict(),
"scaler": scaler.state_dict(),
"config": config,
"epoch": epoch,
"global_step": global_step,
}
eval_file = "eval_res_best.json"
eval_res.to_json(join(config.output_dir, eval_file))
torch.save(save_obj, join(config.output_dir, "ckpt_best.pth"))
best = cur_r_mean
best_epoch = epoch
if config.evaluate:
eval_file = "eval_res.json"
eval_res.to_json(join(config.output_dir, eval_file))
if config.evaluate or config.debug:
break
dist.barrier()
total_time = time.time() - start_time
total_time_str = str(datetime.timedelta(seconds=int(total_time)))
logger.info(f"Training time {total_time_str}")
logger.info(f"best epoch {best_epoch} [config.stop_key {config.stop_key}]")
logger.info(f"Checkpoints and Logs saved at {config.output_dir}")
if is_main_process() and config.wandb.enable:
run.finish()
def eval_after_training(train_config):
# general config for all
train_config.wandb.enable = False
train_config.evaluate = True
train_config.pretrained_path = join(train_config.output_dir, "ckpt_best.pth")
eval_config = copy.deepcopy(train_config)
eval_config.test_types = list(eval_config.test_file.keys())
eval_config.output_dir = join(eval_config.output_dir, f"eval_after_training")
eval_config.result_dir = eval_config.output_dir
if is_main_process():
os.makedirs(eval_config.output_dir, exist_ok=False)
Config.dump(eval_config, os.path.join(eval_config.output_dir, "config.json"))
logger.info(f"===========> START eval_after_training [{eval_config.test_types}]")
main(eval_config)
if __name__ == "__main__":
cfg = setup_main()
main(cfg)
if not cfg.evaluate:
eval_after_training(cfg)