forked from LLNL/libROM
-
Notifications
You must be signed in to change notification settings - Fork 0
/
IncrementalSVDFastUpdate.C
334 lines (296 loc) · 10.1 KB
/
IncrementalSVDFastUpdate.C
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
/******************************************************************************
*
* Copyright (c) 2013-2019, Lawrence Livermore National Security, LLC
* and other libROM project developers. See the top-level COPYRIGHT
* file for details.
*
* SPDX-License-Identifier: (Apache-2.0 OR MIT)
*
*****************************************************************************/
// Description: The concrete implementation of the incremental SVD algorithm
// using Matthew Brand's "fast update" method.
#include "IncrementalSVDFastUpdate.h"
#include "HDFDatabase.h"
#include "mpi.h"
#include <cmath>
#include <limits>
namespace CAROM {
IncrementalSVDFastUpdate::IncrementalSVDFastUpdate(
int dim,
double linearity_tol,
bool skip_linearly_dependent,
int max_basis_dimension,
int samples_per_time_interval,
const std::string& basis_file_name,
bool save_state,
bool restore_state,
bool updateRightSV,
bool debug_algorithm) :
IncrementalSVD(dim,
linearity_tol,
skip_linearly_dependent,
max_basis_dimension,
samples_per_time_interval,
basis_file_name,
save_state,
restore_state,
updateRightSV,
debug_algorithm),
d_Up(0)
{
CAROM_ASSERT(dim > 0);
CAROM_ASSERT(linearity_tol > 0.0);
CAROM_ASSERT(samples_per_time_interval > 0);
// If the state of the SVD is to be restored, do it now. The base class,
// IncrementalSVD, has already opened the database and restored the state
// common to all incremental algorithms. This particular class must also
// read the state of d_Up and then compute the basis. If the database could
// not be found then we can not restore the state.
if (restore_state && d_state_database) {
// Read d_Up.
int num_rows;
d_state_database->getInteger("Up_num_rows", num_rows);
int num_cols;
d_state_database->getInteger("Up_num_cols", num_cols);
d_Up = new Matrix(num_rows, num_cols, true);
d_state_database->getDoubleArray("Up",
&d_Up->item(0, 0),
num_rows*num_cols);
// Close and delete the database.
d_state_database->close();
delete d_state_database;
// Compute the basis.
computeBasis();
}
}
IncrementalSVDFastUpdate::~IncrementalSVDFastUpdate()
{
// If the state of the SVD is to be saved, then create the database now.
// The IncrementalSVD base class destructor will save d_S and d_U. This
// derived class must save its specific state data, d_Up.
//
// If there are multiple time intervals then saving and restoring the state
// does not make sense as there is not one, all encompassing, basis.
if (d_save_state && d_time_interval_start_times.size() == 1) {
// Create state database file.
d_state_database = new HDFDatabase();
d_state_database->create(d_state_file_name);
// Save d_Up.
int num_rows = d_Up->numRows();
d_state_database->putInteger("Up_num_rows", num_rows);
int num_cols = d_Up->numColumns();
d_state_database->putInteger("Up_num_cols", num_cols);
d_state_database->putDoubleArray("Up",
&d_Up->item(0, 0),
num_rows*num_cols);
}
// Delete data members.
if (d_Up) {
delete d_Up;
}
}
void
IncrementalSVDFastUpdate::buildInitialSVD(
double* u,
double time)
{
CAROM_ASSERT(u != 0);
CAROM_ASSERT(time >= 0.0);
// We have a new time interval.
// If this is not the first time interval then delete d_basis, d_U, d_Up,
// and d_S of the just completed time interval.
int num_time_intervals =
static_cast<int>(d_time_interval_start_times.size());
if (num_time_intervals > 0) {
delete d_basis;
delete d_U;
delete d_Up;
delete d_S;
delete d_W;
}
d_time_interval_start_times.resize(num_time_intervals+1);
d_time_interval_start_times[num_time_intervals] = time;
// Build d_S for this new time interval.
d_S = new Matrix(1, 1, false);
Vector u_vec(u, d_dim, true);
double norm_u = u_vec.norm();
d_S->item(0, 0) = norm_u;
// Build d_Up for this new time interval.
d_Up = new Matrix(1, 1, false);
d_Up->item(0, 0) = 1.0;
// Build d_U for this new time interval.
d_U = new Matrix(d_dim, 1, true);
for (int i = 0; i < d_dim; ++i) {
d_U->item(i, 0) = u[i]/norm_u;
}
// Build d_W for this new time interval.
if (d_updateRightSV) {
d_W = new Matrix(1, 1, false);
d_W->item(0, 0) = 1.0;
}
// Compute the basis vectors for this time interval.
computeBasis();
// We now have the first sample for the new time interval.
d_num_samples = 1;
d_num_rows_of_W = 1;
}
void
IncrementalSVDFastUpdate::computeBasis()
{
d_basis = d_U->mult(d_Up);
/*
if (fabs(checkOrthogonality(d_basis)) >
std::numeric_limits<double>::epsilon()*static_cast<double>(d_num_samples)) {
reOrthogonalize(d_basis);
}
*/
if(d_updateRightSV)
{
delete d_basis_right;
d_basis_right = new Matrix(*d_W);
}
}
void
IncrementalSVDFastUpdate::addLinearlyDependentSample(
const Matrix* A,
const Matrix* W,
const Matrix* sigma)
{
CAROM_ASSERT(A != 0);
CAROM_ASSERT(sigma != 0);
// Chop a row and a column off of A to form Amod. Also form
// d_S by chopping a row and a column off of sigma.
Matrix Amod(d_num_samples, d_num_samples, false);
for (int row = 0; row < d_num_samples; ++row){
for (int col = 0; col < d_num_samples; ++col) {
Amod.item(row, col) = A->item(row, col);
d_S->item(row, col) = sigma->item(row, col);
}
}
// Multiply d_Up and Amod and put result into d_Up.
Matrix* Up_times_Amod = d_Up->mult(Amod);
delete d_Up;
d_Up = Up_times_Amod;
Matrix* new_d_W;
if (d_updateRightSV) {
// The new d_W is the product of the current d_W extended by another row
// and column and W. The only new value in the extended version of d_W
// that is non-zero is the new lower right value and it is 1. We will
// construct this product without explicitly forming the extended version of
// d_W.
new_d_W = new Matrix(d_num_rows_of_W+1, d_num_samples, false);
for (int row = 0; row < d_num_rows_of_W; ++row) {
for (int col = 0; col < d_num_samples; ++col) {
double new_d_W_entry = 0.0;
for (int entry = 0; entry < d_num_samples; ++entry) {
new_d_W_entry += d_W->item(row, entry)*W->item(entry, col);
}
new_d_W->item(row, col) = new_d_W_entry;
}
}
for (int col = 0; col < d_num_samples; ++col) {
new_d_W->item(d_num_rows_of_W, col) = W->item(d_num_samples, col);
}
delete d_W;
d_W = new_d_W;
++d_num_rows_of_W;
}
// Reorthogonalize if necessary.
if (fabs(checkOrthogonality(d_Up)) >
std::numeric_limits<double>::epsilon()*d_num_samples) {
reOrthogonalize(d_Up);
}
}
void
IncrementalSVDFastUpdate::addNewSample(
const Vector* j,
const Matrix* A,
const Matrix* W,
Matrix* sigma)
{
CAROM_ASSERT(j != 0);
CAROM_ASSERT(A != 0);
CAROM_ASSERT(sigma != 0);
// Add j as a new column of d_U.
Matrix* newU = new Matrix(d_dim, d_num_samples+1, true);
for (int row = 0; row < d_dim; ++row) {
for (int col = 0; col < d_num_samples; ++col) {
newU->item(row, col) = d_U->item(row, col);
}
newU->item(row, d_num_samples) = j->item(row);
}
delete d_U;
d_U = newU;
Matrix* new_d_W;
if (d_updateRightSV) {
// The new d_W is the product of the current d_W extended by another row
// and column and W. The only new value in the extended version of d_W
// that is non-zero is the new lower right value and it is 1. We will
// construct this product without explicitly forming the extended version of
// d_W.
new_d_W = new Matrix(d_num_rows_of_W+1, d_num_samples+1, false);
for (int row = 0; row < d_num_rows_of_W; ++row) {
for (int col = 0; col < d_num_samples+1; ++col) {
double new_d_W_entry = 0.0;
for (int entry = 0; entry < d_num_samples; ++entry) {
new_d_W_entry += d_W->item(row, entry)*W->item(entry, col);
}
new_d_W->item(row, col) = new_d_W_entry;
}
}
for (int col = 0; col < d_num_samples+1; ++col) {
new_d_W->item(d_num_rows_of_W, col) = W->item(d_num_samples, col);
}
delete d_W;
d_W = new_d_W;
}
// The new d_Up is the product of the current d_Up extended by another row
// and column and A. The only new value in the extended version of d_Up
// that is non-zero is the new lower right value and it is 1. We will
// construct this product without explicitly forming the extended version of
// d_Up.
Matrix* new_d_Up = new Matrix(d_num_samples+1, d_num_samples+1, false);
for (int row = 0; row < d_num_samples; ++row) {
for (int col = 0; col < d_num_samples+1; ++col) {
double new_d_Up_entry = 0.0;
for (int entry = 0; entry < d_num_samples; ++entry) {
new_d_Up_entry += d_Up->item(row, entry)*A->item(entry, col);
}
new_d_Up->item(row, col) = new_d_Up_entry;
}
}
for (int col = 0; col < d_num_samples+1; ++col) {
new_d_Up->item(d_num_samples, col) = A->item(d_num_samples, col);
}
delete d_Up;
d_Up = new_d_Up;
// d_S = sigma.
delete d_S;
d_S = sigma;
// We now have another sample.
++d_num_samples;
++d_num_rows_of_W;
// Reorthogonalize if necessary.
long int max_U_dim;
if (d_num_samples > d_total_dim) {
max_U_dim = d_num_samples;
}
else {
max_U_dim = d_total_dim;
}
if (fabs(checkOrthogonality(d_U)) >
std::numeric_limits<double>::epsilon()*static_cast<double>(max_U_dim)) {
reOrthogonalize(d_U);
}
if (fabs(checkOrthogonality(d_Up)) >
std::numeric_limits<double>::epsilon()*d_num_samples) {
reOrthogonalize(d_Up);
}
if (d_updateRightSV) {
if (fabs(checkOrthogonality(d_W)) >
std::numeric_limits<double>::epsilon()*d_num_samples) {
reOrthogonalize(d_W);
}
}
}
}