Skip to content

The PyTorch 1.6 and Python 3.7 implementation for the paper Graph Convolutional Networks for Text Classification

Notifications You must be signed in to change notification settings

chengsen/PyTorch_TextGCN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Graph Convolutional Networks for Text Classification in PyTorch

PyTorch 1.6 and Python 3.7 implementation of Graph Convolutional Networks for Text Classification [1].

Tested on the 20NG/R8/R52/Ohsumed/MR data set, the code on this repository can achieve the effect of the paper.

Benchmark

dataset 20NG R8 R52 Ohsumed MR
TextGCN(official) 0.8634 0.9707 0.9356 0.6836 0.7674
This repo. 0.8618 0.9704 0.9354 0.6827 0.7643

NOTE: The result of the experiment is to repeat the run 10 times, and then take the average of accuracy.

Requirements

  • fastai==2.0.15
  • PyTorch==1.6.0
  • scipy==1.5.2
  • pandas==1.0.1
  • spacy==2.3.1
  • nltk==3.5
  • prettytable==1.0.0
  • numpy==1.18.5
  • networkx==2.5
  • tqdm==4.49.0
  • scikit_learn==0.23.2

Usage

  1. Process the data first, run data_processor.py (Already done)
  2. Generate graph, run build_graph.py (Already done)
  3. Training model, run trainer.py

References

[1] Yao, L. , Mao, C. , & Luo, Y. . (2018). Graph convolutional networks for text classification.

About

The PyTorch 1.6 and Python 3.7 implementation for the paper Graph Convolutional Networks for Text Classification

Topics

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages