title | booktitle | abstract | layout | series | publisher | issn | id | month | tex_title | firstpage | lastpage | page | order | cycles | bibtex_author | author | date | address | container-title | volume | genre | issued | extras | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Thresholded Lasso Bandit |
Proceedings of the 39th International Conference on Machine Learning |
In this paper, we revisit the regret minimization problem in sparse stochastic contextual linear bandits, where feature vectors may be of large dimension |
inproceedings |
Proceedings of Machine Learning Research |
PMLR |
2640-3498 |
ariu22a |
0 |
Thresholded Lasso Bandit |
878 |
928 |
878-928 |
878 |
false |
Ariu, Kaito and Abe, Kenshi and Proutiere, Alexandre |
|
2022-06-28 |
Proceedings of the 39th International Conference on Machine Learning |
162 |
inproceedings |
|