This repository has been archived by the owner on Feb 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
train.py
285 lines (221 loc) · 10 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
import os
import time
from tqdm import tqdm
import torch
import math
import numpy as np
from sklearn.utils.class_weight import compute_class_weight
from torch.utils.data import DataLoader, RandomSampler
from torch.nn import DataParallel
from utils.log_utils import log_values, log_values_sl
from utils.data_utils import BatchedRandomSampler
from utils import move_to
def get_inner_model(model):
return model.module if isinstance(model, DataParallel) else model
def set_decode_type(model, decode_type):
if isinstance(model, DataParallel):
model = model.module
model.set_decode_type(decode_type)
def validate(model, dataset, problem, opts):
# Validate
print(f'\nValidating on {dataset.size} samples from {dataset.filename}...')
cost = rollout(model, dataset, opts)
gt_cost = rollout_groundtruth(problem, dataset, opts)
opt_gap = ((cost/gt_cost - 1) * 100)
print('Validation groundtruth cost: {:.3f} +- {:.3f}'.format(
gt_cost.mean(), torch.std(gt_cost)))
print('Validation average cost: {:.3f} +- {:.3f}'.format(
cost.mean(), torch.std(cost)))
print('Validation optimality gap: {:.3f}% +- {:.3f}'.format(
opt_gap.mean(), torch.std(opt_gap)))
return cost.mean(), opt_gap.mean()
def rollout(model, dataset, opts):
# Put in greedy evaluation mode!
set_decode_type(model, "greedy")
model.eval()
def eval_model_bat(bat):
with torch.no_grad():
cost, _ = model(move_to(bat['nodes'], opts.device), move_to(bat['graph'], opts.device))
return cost.data.cpu()
return torch.cat([
eval_model_bat(bat)
for bat in tqdm(
DataLoader(dataset, batch_size=opts.batch_size, shuffle=False, num_workers=opts.num_workers),
disable=opts.no_progress_bar, ascii=True
)
], 0)
def rollout_groundtruth(problem, dataset, opts):
return torch.cat([
problem.get_costs(bat['nodes'], bat['tour_nodes'])[0]
for bat in DataLoader(
dataset, batch_size=opts.batch_size, shuffle=False, num_workers=opts.num_workers)
], 0)
def clip_grad_norms(param_groups, max_norm=math.inf):
"""Clips the norms for all param groups to max_norm and returns gradient norms before clipping
"""
grad_norms = [
torch.nn.utils.clip_grad_norm_(
group['params'],
max_norm if max_norm > 0 else math.inf, # Inf so no clipping but still call to calc
norm_type=2
)
for group in param_groups
]
grad_norms_clipped = [min(g_norm, max_norm) for g_norm in grad_norms] if max_norm > 0 else grad_norms
return grad_norms, grad_norms_clipped
def train_epoch(model, optimizer, baseline, lr_scheduler, epoch, val_datasets, problem, tb_logger, opts):
print("\nStart train epoch {}, lr={} for run {}".format(epoch, optimizer.param_groups[0]['lr'], opts.run_name))
step = epoch * (opts.epoch_size // opts.batch_size)
start_time = time.time()
if not opts.no_tensorboard:
tb_logger.log_value('learnrate_pg0', optimizer.param_groups[0]['lr'], step)
# Generate new training data for each epoch
train_dataset = baseline.wrap_dataset(
problem.make_dataset(
min_size=opts.min_size, max_size=opts.max_size, batch_size=opts.batch_size,
num_samples=opts.epoch_size, distribution=opts.data_distribution,
neighbors=opts.neighbors, knn_strat=opts.knn_strat
))
train_dataloader = DataLoader(
train_dataset, batch_size=opts.batch_size, shuffle=False, num_workers=opts.num_workers)
# Put model in train mode!
model.train()
optimizer.zero_grad()
set_decode_type(model, "sampling")
for batch_id, batch in enumerate(tqdm(train_dataloader, disable=opts.no_progress_bar, ascii=True)):
train_batch(
model,
optimizer,
baseline,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
)
step += 1
lr_scheduler.step(epoch)
epoch_duration = time.time() - start_time
print("Finished epoch {}, took {} s".format(epoch, time.strftime('%H:%M:%S', time.gmtime(epoch_duration))))
if (opts.checkpoint_epochs != 0 and epoch % opts.checkpoint_epochs == 0) or epoch == opts.n_epochs - 1:
print('Saving model and state...')
torch.save(
{
'model': get_inner_model(model).state_dict(),
'optimizer': optimizer.state_dict(),
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all(),
'baseline': baseline.state_dict()
},
os.path.join(opts.save_dir, 'epoch-{}.pt'.format(epoch))
)
for val_idx, val_dataset in enumerate(val_datasets):
avg_reward, avg_opt_gap = validate(model, val_dataset, problem, opts)
if not opts.no_tensorboard:
tb_logger.log_value('val{}/avg_reward'.format(val_idx+1), avg_reward, step)
tb_logger.log_value('val{}/opt_gap'.format(val_idx+1), avg_opt_gap, step)
baseline.epoch_callback(model, epoch)
def train_batch(model, optimizer, baseline, epoch,
batch_id, step, batch, tb_logger, opts):
# Unwrap baseline
bat, bl_val = baseline.unwrap_batch(batch)
# Optionally move Tensors to GPU
x = move_to(bat['nodes'], opts.device)
graph = move_to(bat['graph'], opts.device)
bl_val = move_to(bl_val, opts.device) if bl_val is not None else None
# Evaluate model, get costs and log probabilities
cost, log_likelihood = model(x, graph)
# Evaluate baseline, get baseline loss if any (only for critic)
bl_val, bl_loss = baseline.eval(x, graph, cost) if bl_val is None else (bl_val, 0)
# Calculate loss
reinforce_loss = ((cost - bl_val) * log_likelihood).mean()
loss = reinforce_loss + bl_loss
# Normalize loss for gradient accumulation
loss = loss / opts.accumulation_steps
# Perform backward pass
loss.backward()
# Clip gradient norms and get (clipped) gradient norms for logging
grad_norms = clip_grad_norms(optimizer.param_groups, opts.max_grad_norm)
# Perform optimization step after accumulating gradients
if step % opts.accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# Logging
if step % int(opts.log_step) == 0:
log_values(cost, grad_norms, epoch, batch_id, step, log_likelihood,
reinforce_loss, bl_loss, tb_logger, opts)
def train_epoch_sl(model, optimizer, lr_scheduler, epoch, train_dataset, val_datasets, problem, tb_logger, opts):
print("\nStart train epoch {}, lr={} for run {}".format(epoch, optimizer.param_groups[0]['lr'], opts.run_name))
step = epoch * (opts.epoch_size // opts.batch_size)
start_time = time.time()
if not opts.no_tensorboard:
tb_logger.log_value('learnrate_pg0', optimizer.param_groups[0]['lr'], step)
# Create data loader with random sampling
train_dataloader = DataLoader(train_dataset, batch_size=opts.batch_size, num_workers=opts.num_workers,
sampler=BatchedRandomSampler(train_dataset, opts.batch_size))
# Put model in train mode!
model.train()
optimizer.zero_grad()
set_decode_type(model, "greedy")
for batch_id, batch in enumerate(tqdm(train_dataloader, disable=opts.no_progress_bar, ascii=True)):
train_batch_sl(
model,
optimizer,
epoch,
batch_id,
step,
batch,
tb_logger,
opts
)
step += 1
lr_scheduler.step(epoch)
epoch_duration = time.time() - start_time
print("Finished epoch {}, took {} s".format(epoch, time.strftime('%H:%M:%S', time.gmtime(epoch_duration))))
if (opts.checkpoint_epochs != 0 and epoch % opts.checkpoint_epochs == 0) or epoch == opts.n_epochs - 1:
print('Saving model and state...')
torch.save(
{
'model': get_inner_model(model).state_dict(),
'optimizer': optimizer.state_dict(),
'rng_state': torch.get_rng_state(),
'cuda_rng_state': torch.cuda.get_rng_state_all()
},
os.path.join(opts.save_dir, 'epoch-{}.pt'.format(epoch))
)
for val_idx, val_dataset in enumerate(val_datasets):
avg_reward, avg_opt_gap = validate(model, val_dataset, problem, opts)
if not opts.no_tensorboard:
tb_logger.log_value('val{}/avg_reward'.format(val_idx+1), avg_reward, step)
tb_logger.log_value('val{}/opt_gap'.format(val_idx+1), avg_opt_gap, step)
def train_batch_sl(model, optimizer, epoch, batch_id,
step, batch, tb_logger, opts):
# Optionally move Tensors to GPU
x = move_to(batch['nodes'], opts.device)
graph = move_to(batch['graph'], opts.device)
if opts.model == 'nar':
targets = move_to(batch['tour_edges'], opts.device)
# Compute class weights for NAR decoder
_targets = batch['tour_edges'].numpy().flatten()
class_weights = compute_class_weight("balanced", classes=np.unique(_targets), y=_targets)
class_weights = move_to(torch.FloatTensor(class_weights), opts.device)
else:
class_weights = None
targets = move_to(batch['tour_nodes'], opts.device)
# Evaluate model, get costs and loss
cost, loss = model(x, graph, supervised=True, targets=targets, class_weights=class_weights)
# Normalize loss for gradient accumulation
loss = loss / opts.accumulation_steps
# Perform backward pass
loss.backward()
# Clip gradient norms and get (clipped) gradient norms for logging
grad_norms = clip_grad_norms(optimizer.param_groups, opts.max_grad_norm)
# Perform optimization step after accumulating gradients
if step % opts.accumulation_steps == 0:
optimizer.step()
optimizer.zero_grad()
# Logging
if step % int(opts.log_step) == 0:
log_values_sl(cost, grad_norms, epoch, batch_id,
step, loss, tb_logger, opts)