This repository has been archived by the owner on Feb 26, 2024. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 44
/
eval.py
215 lines (173 loc) · 9.51 KB
/
eval.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
#!/usr/bin/env python
import math
import os
import time
import argparse
import numpy as np
from tqdm import tqdm
import torch
from train import rollout_groundtruth
from utils import load_model, move_to, get_best
from utils.data_utils import save_dataset
from torch.utils.data import DataLoader
from utils.functions import parse_softmax_temperature
from nets.nar_model import NARModel
import warnings
warnings.filterwarnings("ignore", message="indexing with dtype torch.uint8 is now deprecated, please use a dtype torch.bool instead.")
def eval_dataset(dataset_path, decode_strategy, width, softmax_temp, opts):
model, model_args = load_model(opts.model)
use_cuda = torch.cuda.is_available() and not opts.no_cuda
device = torch.device("cuda:0" if use_cuda else "cpu")
dataset = model.problem.make_dataset(
filename=dataset_path, batch_size=opts.batch_size, num_samples=opts.val_size,
neighbors=model_args['neighbors'], knn_strat=model_args['knn_strat'], supervised=True
)
results = _eval_dataset(model, dataset, decode_strategy, width, softmax_temp, opts, device)
costs, tours, durations = zip(*results)
costs, tours, durations = np.array(costs), np.array(tours), np.array(durations)
gt_tours = dataset.tour_nodes
gt_costs = rollout_groundtruth(model.problem, dataset, opts).cpu().numpy()
opt_gap = ((costs/gt_costs - 1) * 100)
results = zip(costs, gt_costs, tours, gt_tours, opt_gap, durations)
print('Validation groundtruth cost: {:.3f} +- {:.3f}'.format(
gt_costs.mean(), np.std(gt_costs)))
print('Validation average cost: {:.3f} +- {:.3f}'.format(
costs.mean(), np.std(costs)))
print('Validation optimality gap: {:.3f}% +- {:.3f}'.format(
opt_gap.mean(), np.std(opt_gap)))
print('Average duration: {:.3f}s +- {:.3f}'.format(
durations.mean(), np.std(durations)))
print('Total duration: {}s'.format(np.sum(durations)/opts.batch_size))
dataset_basename, ext = os.path.splitext(os.path.split(dataset_path)[-1])
model_name = "_".join(os.path.normpath(os.path.splitext(opts.model)[0]).split(os.sep)[-2:])
results_dir = os.path.join(opts.results_dir, dataset_basename)
os.makedirs(results_dir, exist_ok=True)
out_file = os.path.join(results_dir, "{}-{}-{}{}-t{}-{}-{}{}".format(
dataset_basename, model_name,
decode_strategy,
width if decode_strategy != 'greedy' else '',
softmax_temp, opts.offset, opts.offset + len(costs), ext
))
assert opts.f or not os.path.isfile(
out_file), "File already exists! Try running with -f option to overwrite."
save_dataset(results, out_file)
latex_str = ' & ${:.3f}\pm{:.3f}$ & ${:.3f}\%\pm{:.3f}$ & ${:.3f}$s'.format(
costs.mean(), np.std(costs), opt_gap.mean(), np.std(opt_gap), np.sum(durations)/opts.batch_size)
return latex_str
def _eval_dataset(model, dataset, decode_strategy, width, softmax_temp, opts, device):
model.to(device)
model.eval()
model.set_decode_type(
"greedy" if decode_strategy in ('bs', 'greedy') else "sampling",
temp=softmax_temp
)
dataloader = DataLoader(dataset, batch_size=opts.batch_size, shuffle=False, num_workers=opts.num_workers)
results = []
for batch in tqdm(dataloader, disable=opts.no_progress_bar, ascii=True):
# Optionally move Tensors to GPU
nodes, graph = move_to(batch['nodes'], device), move_to(batch['graph'], device)
start = time.time()
with torch.no_grad():
if type(model) == NARModel:
if decode_strategy == 'greedy':
_, _, sequences, costs = model.greedy_search(nodes, graph)
costs, sequences = costs.cpu().numpy(), sequences.cpu().numpy()
else:
assert decode_strategy == 'bs', "NAR Decoder model only supports greedy/beam search"
_, _, sequences, costs = model.beam_search(nodes, graph, beam_size=width)
batch_size = len(costs)
else:
if decode_strategy in ('sample', 'greedy'):
if decode_strategy == 'greedy':
assert width == 0, "Do not set width when using greedy"
assert opts.batch_size <= opts.max_calc_batch_size, \
"batch_size should be smaller than calc batch size"
batch_rep = 1
iter_rep = 1
elif width * opts.batch_size > opts.max_calc_batch_size:
assert opts.batch_size == 1
assert width % opts.max_calc_batch_size == 0
batch_rep = opts.max_calc_batch_size
iter_rep = width // opts.max_calc_batch_size
else:
batch_rep = width
iter_rep = 1
assert batch_rep > 0
# This returns (batch_size, iter_rep shape)
sequences, costs = model.sample_many(nodes, graph, batch_rep=batch_rep, iter_rep=iter_rep)
batch_size = len(costs)
ids = torch.arange(batch_size, dtype=torch.int64, device=costs.device)
else:
assert decode_strategy == 'bs'
cum_log_p, sequences, costs, ids, batch_size = model.beam_search(
nodes, graph, beam_size=width,
compress_mask=opts.compress_mask,
max_calc_batch_size=opts.max_calc_batch_size
)
if sequences is None:
sequences = [None] * batch_size
costs = [math.inf] * batch_size
else:
sequences, costs = get_best(
sequences.cpu().numpy(), costs.cpu().numpy(),
ids.cpu().numpy() if ids is not None else None,
batch_size
)
duration = time.time() - start
for seq, cost in zip(sequences, costs):
if model.problem.NAME in ("tsp", "tspsl"):
seq = seq.tolist() # No need to trim as all are same length
else:
assert False, "Unkown problem: {}".format(model.problem.NAME)
results.append((cost, seq, duration))
return results
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("datasets", nargs='+',
help="Filename of the dataset(s) to evaluate")
parser.add_argument("-f", action='store_true',
help="Set true to overwrite")
parser.add_argument("-o", default=None,
help="Name of the results file to write")
parser.add_argument('--val_size', type=int, default=12800,
help='Number of instances used for reporting validation performance')
parser.add_argument('--offset', type=int, default=0,
help='Offset where to start in dataset (default 0)')
parser.add_argument('--batch_size', type=int, default=128,
help="Batch size to use during (baseline) evaluation")
parser.add_argument('--decode_strategies', type=str, nargs='+',
help='Beam search (bs), Sampling (sample) or Greedy (greedy)')
parser.add_argument('--widths', type=int, nargs='+',
help='Sizes of beam to use for beam search (or number of samples for sampling), '
'0 to disable (default), -1 for infinite')
parser.add_argument('--softmax_temperature', type=parse_softmax_temperature, default=1,
help="Softmax temperature (sampling or bs)")
parser.add_argument('--model', type=str,
help="Path to model checkpoints directory")
parser.add_argument('--no_cuda', action='store_true',
help='Disable CUDA')
parser.add_argument('--no_progress_bar', action='store_true',
help='Disable progress bar')
parser.add_argument('--compress_mask', action='store_true',
help='Compress mask into long')
parser.add_argument('--max_calc_batch_size', type=int, default=10000,
help='Size for subbatches')
parser.add_argument('--results_dir', default='results',
help="Name of results directory")
parser.add_argument('--multiprocessing', action='store_true',
help='Use multiprocessing to parallelize over multiple GPUs')
parser.add_argument('--num_workers', type=int, default=0,
help='Number of workers for DataLoaders')
parser.add_argument('--seed', type=int, default=1234, help='Random seed to use')
opts = parser.parse_args()
assert opts.o is None or (len(opts.datasets) == 1 and len(opts.width) <= 1), \
"Cannot specify result filename with more than one dataset or more than one width"
# Set the random seed
torch.manual_seed(opts.seed)
np.random.seed(opts.seed)
for decode_strategy, width in zip(opts.decode_strategies, opts.widths):
latex_str = "{}-{}{}".format(opts.model, decode_strategy, width if decode_strategy != 'greedy' else '')
for dataset_path in opts.datasets:
latex_str += eval_dataset(dataset_path, decode_strategy, width, opts.softmax_temperature, opts)
with open("results/results_latex.txt", "a") as f:
f.write(latex_str+"\n")