-
Notifications
You must be signed in to change notification settings - Fork 0
/
testCases.py
104 lines (91 loc) · 2.86 KB
/
testCases.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import Euler1D
import numpy as np
import matplotlib.pyplot as plt
import RiemannExact as RE
# Specify the control file locations
path_Roe = "./RoeTest/test"
path_HLLC = "./HLLCTest/test"
path_HLL = "./HLLTest/test"
path_list = [path_Roe, path_HLLC, path_HLL]
name_list = ["Roe", "HLLC", "HLL"]
save_list = ["./Results/Roe/test", "./Results/AUSM/test"]
save_loc = "./Img/test"
y_list = [r"$\rho$", r"$u$", r"$p$"]
# Define the problems to solve (For the exact Godunov solver)
problems_dic = {
"stateL": [
[1.0, 0.0, 1.0],
[1.0, -2.0 ,0.4],
[1.0, 0.0, 1000.0],
[1.0, 0.0, 0.01],
[5.99924, 19.5975, 460.894],
],
"stateR": [
[0.125, 0.0, 0.1],
[1.0, 2.0, 0.4],
[1.0, 0.0, 0.01],
[1.0, 0.0, 100.0],
[5.99242, -6.19633, 46.0950],
],
"x0": [
0.5, 0.5, 0.5, 0.5, 0.4
],
"t0": [
0.25, 0.15, 0.012, 0.035, 0.035
]
}
ne = 201
x = np.linspace(0, 1, ne)
for j in range(5): # go through all the problems
print(f"*************** Solving Problem {j} ****************")
file0 = path_list[0]+str(j+1)+".txt"
file1 = path_list[1]+str(j+1)+".txt"
file2 = path_list[2]+str(j+1)+".txt"
solver0 = Euler1D.Euler1D(file0)
solver1 = Euler1D.Euler1D(file1)
solver2 = Euler1D.Euler1D(file2)
rp = RE.RiemannExact(np.array(problems_dic["stateL"][j]),
np.array(problems_dic["stateR"][j]), gamma = 1.4
)
t0 = problems_dic["t0"][j]
x0 = problems_dic["x0"][j]
# Solve the approximate Riemann Problem
cfl = 0.10
global_t = 0.0
while global_t < t0:
dt = solver0.time_advancement_RK(cfl = cfl)
global_t += dt
solver0.con2Prim()
cfl = 0.10
global_t = 0.0
while global_t < t0:
dt = solver1.time_advancement_RK(cfl = cfl)
global_t += dt
solver1.con2Prim()
cfl = 0.10
global_t = 0.0
while global_t < t0:
dt = solver2.time_advancement_RK(cfl = cfl)
global_t += dt
solver2.con2Prim()
# Solve the exact Riemann problem
rp.solve()
s = (x - x0) / t0
Esol = np.zeros((3, s.shape[0]))
for col, ss in enumerate(s):
Esol[:, col] = rp.sample(ss)
# plot and save the result
fig, ax = plt.subplots(1,3, figsize = (15,4), dpi = 200, sharex = True)
y_list = [r"$\rho$", r"$u$", r"$p$", r"$e_{int}$"]
for k in range(3):
ax[k].plot(solver0.mesh, solver0.sol[k, :], label = "Roe")
ax[k].plot(solver1.mesh, solver1.sol[k, :], label = "HLLC")
ax[k].plot(solver2.mesh, solver2.sol[k, :], label = "HLL")
ax[k].plot(x, Esol[k], label = "Exact", linestyle = "dashed")
ax[k].legend()
ax[k].grid()
ax[k].set_xlabel("$x$")
ax[k].set_ylabel(y_list[k])
ax[k].set_xlim(0, 1)
fig.savefig(save_loc+str(j+1)+".png")
print(f"*************** Completed {j} ****************\n")