forked from cihanbilge/AstrocyteSegmentation
-
Notifications
You must be signed in to change notification settings - Fork 0
/
GESU_net.py
224 lines (166 loc) · 9.94 KB
/
GESU_net.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
import os
import numpy as np
from keras.models import *
from keras.layers import Input, Cropping2D, concatenate, Concatenate, merge, Conv2D, MaxPooling2D, UpSampling2D, Dropout, Cropping2D, add, Dense
from keras.optimizers import *
from keras.layers import Flatten
from keras.callbacks import ModelCheckpoint, LearningRateScheduler, ReduceLROnPlateau
from keras_applications import vgg16
from keras import backend as kerasB
import keras as KR
from data import *
from conv2d_LC_layer import Conv2D_LC
#import test_predict
class myGESUnet(object):
def __init__(self, img_rows = 128, img_cols = 128):
self.img_rows = img_rows
self.img_cols = img_cols
def load_data(self):
mydata = dataProcess(self.img_rows, self.img_cols)
mydata.create_train_data()
mydata.create_test_data()
#myAugdata = myAugmentation(self)
#myAugdata.Augmentation()
#myAugdata.splitMerge()
imgs_train, imgs_mask_train = mydata.load_train_data()
imgs_test = mydata.load_test_data()
imgs_train /= 255
imgs_test /= 255
return imgs_train, imgs_mask_train, imgs_test
def get_gesunet(self):
# The first U-net:
#The fırst net is based on convolution with predefined filters. Number of filters is limited with sample size
inputs = Input((self.img_rows, self.img_cols, 1), name='first_data')
#data_format = 'channels_last'
#num_classes = 2
S = 9
K = (3, 3)
nf=64
conv1 = Conv2D_LC(num_filters=nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(inputs)
conv1 = Conv2D_LC(num_filters=nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv1)
conv1 = Conv2D_LC(num_filters=nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv1)
pool1 = MaxPooling2D(pool_size=(2, 2))(conv1)
conv2 = Conv2D_LC(num_filters=2*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(pool1)
conv2 = Conv2D_LC(num_filters=2*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv2)
conv2 = Conv2D_LC(num_filters=2*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv2)
pool2 = MaxPooling2D(pool_size=(2, 2))(conv2)
conv3 = Conv2D_LC(num_filters=4*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(pool2)
conv3 = Conv2D_LC(num_filters=4*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv3)
conv3 = Conv2D_LC(num_filters=4*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv3)
pool3 = MaxPooling2D(pool_size=(2, 2))(conv3)
conv4 = Conv2D_LC(num_filters=8*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(pool3)
conv4 = Conv2D_LC(num_filters=8*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
conv4 = Conv2D_LC(num_filters=8*nf, kernel_size=K, sample_size=S, activation='relu', padding='same',
kernel_initializer='he_normal')(conv4)
up7 = Conv2D(4*nf, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv4))
merge7 = concatenate([conv3, up7], axis=3)
conv7 = Conv2D(4*nf, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7)
conv7 = Conv2D(4*nf, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7)
up8 = Conv2D(2*nf, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv7))
merge8 = concatenate([conv2, up8], axis=3)
conv8 = Conv2D(2*nf, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8)
conv8 = Conv2D(2*nf, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8)
up9 = Conv2D(nf, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv8))
merge9 = concatenate([conv1, up9], axis=3)
conv9 = Conv2D(nf, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9)
conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
#conv9 = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
#conv9 = Conv2D(32, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
#conv9 = Conv2D(16, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9)
conv9 = Conv2D(1, 3, activation='sigmoid', padding='same', kernel_initializer='he_normal')(conv9)
inputsT = concatenate([inputs, concatenate([inputs, conv9], axis=3)], axis=3)
modelA = Model(inputs=inputs, output=inputsT)
inputs2 = Input(shape=(128, 128, 3), name='Sec_data')
p2 = Input(shape=(4, 4, 1024))
vgg_conv = vgg16.VGG16(input_tensor=inputs2,
weights='imagenet',
include_top=False,
input_shape=(128, 128, 3),
classes=2)
# vgg_conv = vgg16.VGG16(input_tensor= imgs_train, weights='imagenet', include_top=False)
#imgs_train = vgg_conv.predict(imgs_train)
x1 = vgg_conv.get_layer('block1_conv2').output
x2 = vgg_conv.get_layer('block2_conv2').output
x3 = vgg_conv.get_layer('block3_conv3').output
x4 = vgg_conv.get_layer('block4_conv3').output
x5 = vgg_conv.get_layer('block5_pool').output
x6 = vgg_conv.get_layer('block5_conv3').output
conv5t = Conv2D(2048, 3, activation='relu', padding='same', kernel_initializer='he_normal')(x5)
conv5t = Conv2D(2048, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv5t)
up6t = Conv2D(1024, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv5t))
merge6t = concatenate([x6, up6t], axis=3)
conv6t = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge6t)
conv6t = Conv2D(1024, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv6t)
up7t = Conv2D(512, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv6t))
merge7t = concatenate([x4, up7t], axis=3)
conv7t = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge7t)
conv7t = Conv2D(512, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv7t)
up8t = Conv2D(256, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv7t))
merge8t = concatenate([x3, up8t], axis=3)
conv8t = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge8t)
conv8t = Conv2D(256, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv8t)
up9t = Conv2D(128, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv8t))
merge9t = concatenate([x2, up9t], axis=3)
conv9t = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge9t)
conv9t = Conv2D(128, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv9t)
up10t = Conv2D(64, 2, activation='relu', padding='same', kernel_initializer='he_normal')(
UpSampling2D(size=(2, 2))(conv9t))
merge10t = concatenate([x1, up10t], axis=3)
conv10t = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(merge10t)
conv10t = Conv2D(64, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10t)
conv10t = Conv2D(2, 3, activation='relu', padding='same', kernel_initializer='he_normal')(conv10t)
conv10t = Conv2D(1, 1, activation='sigmoid')(conv10t)
modelB = Model(inputs=inputT, output=conv10t)
Out1= modelA(inputs)
Out = modelB(Out1)
modelC = Model(inputs=inputs, output=Out)
modelC.compile(optimizer=Adam(lr=0.000025), loss="mean_squared_error", metrics=['accuracy'])
return modelC
def train(self):
print("loading data")
imgs_train, imgs_mask_train, imgs_test = self.load_data()
print('train data size1:', imgs_train.shape)
print("loading data done")
model = self.get_gesunet()
model_checkpoint = ModelCheckpoint('Model_GESU.hdf5', monitor='loss',verbose=1, save_best_only=True)
print('Fitting model...')
#class weights optional, if planing to use update the array size
#class_weights = np.zeros((16384,2))
#class_weights[:,0] += 1
#class_weights[:,1] += 50
history = model.fit(imgs_train, imgs_mask_train, batch_size=10, verbose=2, nb_epoch=80, validation_split=0.2, shuffle=True, callbacks=[model_checkpoint])
print('predict test data')
print(history.history.keys())
imgs_mask_test = model.predict(imgs_test, batch_size=1, verbose=1)
np.save('../results/imgs_mask_test.npy', imgs_mask_test)
def save_img(self):
print("array to image")
imgs = np.load('imgs_mask_test.npy')
for i in range(imgs.shape[0]):
img = imgs[i]
img = array_to_img(img)
img.save("../results/%d.jpg"%(i))
if __name__ == '__main__':
kerasB.clear_session()
GESU_net = myGESUnet()
GESU_net.load_data()
GESU_net.train()
#test_predict()