-
Notifications
You must be signed in to change notification settings - Fork 0
/
verify_ihs_paper.py
299 lines (257 loc) · 12.8 KB
/
verify_ihs_paper.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
'''
Experimental script which verifies the IHS paper results with the count sketch,
SRHT, and Gaussian sketch.
Experiments:
1. Solution Error / Prediction Error vs row dimension
2. Error compared to number of iterations
3. Error compared to dimensionality of the data.
'''
import itertools
import numpy as np
from sklearn.datasets import make_regression
from sklearn.linear_model import LinearRegression
from lib import countsketch, srht, gaussian, classical_sketch
from lib import ClassicalSketch
from lib import iterative_hessian_sketch as ihs
from synthetic_data_functions import unconstrained_regession_data
import matplotlib.pyplot as plt
random_seed = 400
np.random.seed(random_seed)
sketch_names = ["Exact", "CountSketch", "SRHT","Gaussian", "Classical"]
ihs_sketch_names = ["CountSketch", "SRHT", "Gaussian"]
sketch_functions = {"CountSketch": countsketch.CountSketch,
"SRHT" : srht.SRHT,
"Gaussian" : gaussian.GaussianSketch,
"Classical" : classical_sketch.ClassicalSketch}
repeats = 10
plotting_params = {"CountSketch" : {"colour" : "b",
"marker" : "o" },
"SRHT" : {"colour" : "k",
"marker" : "s"},
"Gaussian" : {"colour" : "r",
"marker" : "v"},
"Classical" : {"colour" : "m",
"marker" : "*"},
"Exact" : {"colour" : "mediumspringgreen",
"marker" : "^"}
}
def mean_square_error(x1, x2):
'''compute ||x2 - x1||_2^2'''
return np.linalg.norm(x2-x1)**2
def prediction_error(data,x1,x2):
'''compute np.sqrt(1/n)*||A(x1-x2)||_2'''
return (1/np.sqrt(data.shape[0]))*np.linalg.norm(data@(x1-x2))
def experiment_mse_vs_row_dim():
'''
nb. need to square the prediction error'''
row_dims = [100*2**i for i in range(3,15)]
d = 10
sketch_size = np.int(5*d)
num_rounds = [1 + np.int(np.ceil(np.log2(n))) for n in row_dims]
classical_sketch_size = [np.int(N*sketch_size) for N in num_rounds ]
print("Using sketch size: {}".format(sketch_size))
print("Classical sketch sizes: {}".format(classical_sketch_size))
print("Num iterations: {}".format(num_rounds))
# Output dictionaries
MSE = {sketch_names[i] : np.zeros(len(row_dims),) for i in range(len(sketch_names)) }
PRED_ERROR = {sketch_names[i] : np.zeros(len(row_dims),) for i in range(len(sketch_names)) }
for n in row_dims:
print("Testing {} rows".format(n))
experiment_index = row_dims.index(n)
for trial in range(repeats):
X,y, x_true = unconstrained_regession_data(n,d,variance=1.0)
print("TRIAL {}".format(trial))
for sketch_method in sketch_names:
if sketch_method is "Exact":
# Solve the initial regression
true_model = LinearRegression()
true_model.fit(X,y)
x_opt = true_model.coef_
MSE["Exact"][experiment_index] += mean_square_error(x_opt, x_true)
PRED_ERROR["Exact"][experiment_index] += prediction_error(X,x_opt, x_true)
elif sketch_method is "Classical":
sketch_and_solve = ClassicalSketch(data=X, targets=y,
sketch_dimension=classical_sketch_size[experiment_index],
sketch_type="Gaussian")
x_classical = sketch_and_solve.solve()
MSE["Classical"][experiment_index] += mean_square_error(x_true, x_classical)
PRED_ERROR["Classical"][experiment_index] += prediction_error(X, x_true, x_classical)
else:
ols_ihs = ihs.IHS(data=X, targets=y, sketch_dimension=sketch_size,
sketch_type=sketch_method,
number_iterations=num_rounds[experiment_index],
random_state=random_seed)
print("IHS ALGORITHM WITH {}".format(sketch_method))
#start = default_timer()
x_approx = ols_ihs.solve()
MSE[sketch_method][experiment_index] += mean_square_error(x_true, x_approx)
PRED_ERROR[sketch_method][experiment_index] += prediction_error(X, x_true, x_approx)
print(MSE)
print(PRED_ERROR)
np.save("figures/verify_ihs_error_num_rows_mse.npy", MSE)
np.save("figures/verify_ihs_error_num_rows_pred_error.npy", PRED_ERROR)
fig, (ax0, ax1) = plt.subplots(1,2)
for sketch_method in sketch_names:
my_colour, my_marker = plotting_params[sketch_method]["colour"], plotting_params[sketch_method]["marker"]
MSE[sketch_method] /= repeats
PRED_ERROR[sketch_method] /= repeats
if sketch_method is "Exact":
my_label = "Optimal"
else:
my_label = sketch_method
ax0.plot(row_dims, MSE[sketch_method], color=my_colour, marker=my_marker,
linewidth=2, markersize=6, label=my_label)
ax1.plot(row_dims, PRED_ERROR[sketch_method], color=my_colour,
marker=my_marker,linewidth=2, markersize=6, label=my_label)
ax0.set_xscale('log')
ax0.set_yscale('log')
ax0.set_xlabel("n")
ax0.set_ylabel("Solution Error")
ax0.legend()
ax0.grid(True)
ax1.set_xscale('log')
ax1.set_yscale('log')
ax1.grid(True)
ax1.set_xlabel("n")
ax1.set_ylabel("Prediction Error")
ax1.legend()
plt.tight_layout()
fig.savefig("figures/verify_ihs_error_num_rows.pdf", bbox_inches="tight")
plt.show()
def experiment_error_vs_iteration():
n = 6000
d = 200
gamma_vals = [4,6,8]
ihs_sketch_names = ["CountSketch", "SRHT", "Gaussian"]
number_iterations = np.asarray(np.linspace(2,40,20), dtype=np.int)
# Output dictionaries
error_to_lsq = {sketch_name : {} for sketch_name in ihs_sketch_names}
error_to_truth = {sketch_name : {} for sketch_name in ihs_sketch_names}
for sketch_name in ihs_sketch_names:
for gamma in gamma_vals:
error_to_lsq[sketch_name][gamma] = []
error_to_truth[sketch_name][gamma] = []
print(error_to_lsq)
print(error_to_truth)
X, y, x_star = make_regression(n_samples=n, n_features=d,\
n_informative=d,noise=1.0,coef=True)
# Least squares estimator
optimal = np.linalg.lstsq(X,y)
x_ls = optimal[0]
lsq_vs_truth_errors = np.log(1/np.sqrt(n))*np.linalg.norm(X@(x_ls-x_star))
for gamma in gamma_vals:
sketch_size = int(gamma*d)
for ii in range(len(number_iterations)):
print("Testing gamma: {}, num_iterations: {}".format(gamma,number_iterations[ii]))
iter_num = number_iterations[ii]
for sketch_method in ihs_sketch_names:
lsq_error, truth_error = 0,0
for trial in range(repeats):
print("{}, trial: {}".format(sketch_method, trial))
x_approx = ihs.IHS(data=X,targets=y,sketch_dimension=sketch_size,sketch_type=sketch_method,
number_iterations=iter_num, random_state=random_seed+ii).solve() # jsut putting + ii in to change the random seed
lsq_error += prediction_error(X,x_approx, x_ls)
truth_error += prediction_error(X,x_approx, x_star)
mean_lsq_error = lsq_error/repeats
mean_truth_error = truth_error/repeats
error_to_lsq[sketch_method][gamma].append(mean_lsq_error)
error_to_truth[sketch_method][gamma].append(mean_truth_error)
### Save the dictionaries
np.save("figures/verify_ihs_error_to_lsq.npy", error_to_lsq)
np.save("figures/verify_ihs_error_to_truth.npy", error_to_truth)
## Error plots
# Plotting dict for gamma
styles = ["--", "-", ":"]
line_params = {gamma_vals[i] : styles[i] for i in range(len(styles))}
fig, ax = plt.subplots()
for sketch_method in ihs_sketch_names:
for gamma in gamma_vals:
my_label = sketch_method + str(gamma)
my_colour, my_marker = plotting_params[sketch_method]["colour"], plotting_params[sketch_method]["marker"]
my_line = line_params[gamma]
ax.plot(number_iterations, np.log(error_to_lsq[sketch_method][gamma]),
color=my_colour, marker=my_marker, linewidth=2, markersize=6,
linestyle=my_line,label=my_label)
ax.legend()
fig.savefig("figures/verify_ihs_error_to_lsq.pdf", bbox_inches="tight")
ax.set_title("Log Error to LSQ")
fig, ax = plt.subplots()
# Add a green line indicating the optimal estimate accuracy?
for sketch_method in ihs_sketch_names:
for gamma in gamma_vals:
my_label = sketch_method + str(gamma)
my_colour, my_marker = plotting_params[sketch_method]["colour"], plotting_params[sketch_method]["marker"]
my_line = line_params[gamma]
ax.plot(number_iterations, 1+np.log(error_to_truth[sketch_method][gamma]),
color=my_colour, marker=my_marker, linewidth=2, markersize=6,
linestyle=my_line,label=my_label)
ax.legend()
fig.savefig("figures/verify_ihs_error_to_truth.pdf", bbox_inches="tight")
ax.set_title("Log Error to Truth")
plt.show()
def experiment_error_vs_dimensionality():
dimension = [2**i for i in range(4,9)]
# Output dictionaries
error_to_truth = {sketch_name : {} for sketch_name in sketch_names}
for sketch_name in sketch_names:
for d in dimension:
error_to_truth[sketch_name][d] = 0
print(error_to_truth)
for d in dimension:
n = 250*d
ii = dimension.index(d)
sampling_rate = 10
num_iterations = 1+np.int(np.log(n))
for trial in range(5):
# Generate the data
X, y, x_star = make_regression(n_samples=n, n_features=d,\
n_informative=d,noise=1.0,coef=True)
for sketch in sketch_names:
print("TRIAL {}: Testing {} on {}".format(trial, sketch,d))
if sketch is "Exact":
x = np.linalg.lstsq(X,y)[0]
opt_error = prediction_error(X, x_star, x)
elif sketch is "Classical":
sketch_size = sampling_rate*num_iterations*d
#sketch_size = sampling_rate*d
print("Classic sketch with {} sketch size".format(sketch_size))
x = ClassicalSketch(data=X, targets=y,
sketch_dimension=sketch_size,
sketch_type="SRHT").solve()
else:
sketch_size = sampling_rate*d
print("Using {} iterations, sketch_size {}".format(num_iterations, sketch_size))
x = ihs.IHS(data=X,targets=y,sketch_dimension=sketch_size,
sketch_type=sketch, number_iterations=num_iterations,
random_state=random_seed).solve()
opt_error = prediction_error(X,x_star,x)
error_to_truth[sketch][d] += opt_error
print(error_to_truth)
### Save the dictionaries
np.save("figures/verify_ihs_error_dimension.npy", error_to_truth)
for sketch in sketch_names:
for d in dimension:
error_to_truth[sketch][d] /= repeats
print(error_to_truth)
# plotting tools
index = range(len(dimension))
bar_width = 0.15
fig, ax = plt.subplots()
for ii in index:
d = dimension[ii]
exact_rects = ax.bar(index[ii], error_to_truth["Exact"][d], bar_width,color=plotting_params['Exact']["colour"])
classical_rects = ax.bar(index[ii]+bar_width, error_to_truth["Classical"][d], bar_width,color=plotting_params['Classical']["colour"])
countsketch_rects=classical_rects = ax.bar(index[ii]+2*bar_width, error_to_truth["CountSketch"][d], bar_width,color=plotting_params['CountSketch']["colour"])
srht_rects=classical_rects = ax.bar(index[ii]+3*bar_width, error_to_truth["SRHT"][d], bar_width,color=plotting_params['SRHT']["colour"],label="SRHT")
gaussian_rects=classical_rects = ax.bar(index[ii]+4*bar_width, error_to_truth["Gaussian"][d], bar_width,color=plotting_params['Gaussian']["colour"])
ax.set_xticks(np.asarray(index,dtype=np.float) + 2*bar_width)
ax.set_xticklabels(dimension)
#ax.legend()
fig.savefig("figures/verify_ihs_error_dimension.pdf", bbox_inches="tight")
plt.show()
def main():
experiment_mse_vs_row_dim()
#experiment_error_vs_iteration()
#experiment_error_vs_dimensionality()
if __name__ == "__main__":
main()