-
Notifications
You must be signed in to change notification settings - Fork 0
/
NARXsystem.jl
75 lines (56 loc) · 1.98 KB
/
NARXsystem.jl
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
module NARXsystem
using LinearAlgebra
export NARXsys, update!, orders
mutable struct NARXsys
order_inputs ::Integer
order_outputs ::Integer
input_buffer ::Vector{Float64}
output_buffer ::Vector{Float64}
basis_function ::Function
coefficients ::Vector{Float64}
observation ::Float64
mnoise_sd ::Float64 # Measurement noise standard deviation
input_lims ::Tuple{Float64,Float64}
function NARXsys(coefficients::Vector{Float64},
basis_function::Function,
mnoise_sd::Float64;
order_inputs::Integer = 1,
order_outputs::Integer = 1,
input_lims::Tuple{Float64,Float64} = (-Inf, Inf))
input_buffer = zeros(1+order_inputs)
output_buffer = zeros(order_outputs)
init_observation = 0.0
return new(order_inputs,
order_outputs,
input_buffer,
output_buffer,
basis_function,
coefficients,
init_observation,
mnoise_sd,
input_lims)
end
end
function update!(sys::NARXsys, input::Float64)
# Update buffer with previous observation
sys.output_buffer = backshift(sys.output_buffer, sys.observation)
# Update input buffer
clamped_input = clamp.(input, sys.input_lims...)
sys.input_buffer = backshift(sys.input_buffer, clamped_input)
# Generate new observation
ϕ = sys.basis_function([sys.output_buffer; sys.input_buffer])
sys.observation = dot(sys.coefficients, ϕ) + sys.mnoise_sd*randn()
end
function orders(sys::NARXsys)
return (sys.order_inputs, sys.order_outputs)
end
function backshift(x::AbstractVector, a::Number)
"Shift elements down and add element"
N = size(x,1)
# Shift operator
S = Tridiagonal(ones(N-1), zeros(N), zeros(N-1))
# Basis vector
e = [1.0; zeros(N-1)]
return S*x + e*a
end
end;