-
Notifications
You must be signed in to change notification settings - Fork 0
/
math-460-well-ordering.tex
299 lines (218 loc) · 8.09 KB
/
math-460-well-ordering.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
%\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myaxiom}{Axiom}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{myfakeproof}{Fake Proof}
\newtheorem{mybadformproof}{Bad Form Proof}
\newtheorem{hurestic}{Hurestic}
\newenvironment{alphalist}{
\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\newenvironment{snowflakelist}{
\vspace{-0.4in}
\begin{enumerate}[\textleaf]
\addtolength{\itemsep}{-1.2\itemsep}}
{\end{enumerate}}
\newenvironment{checklist}{
\begin{enumerate}[\ding{52}]
\addtolength{\itemsep}{-1.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
%\usepackage{array}
%\newcolumntype{C}{>$c<$}
\newcommand{\llnot}{\lnot \,} % is accepted
\newcommand{\mydash}{\text{--}}
%------------------
\title{\textbf{Well ordering}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
\subtitle{%Lesson 11 \\ \vspace{0.5in}
``The only way to learn mathematics is to do mathematics.'' \\ \vspace{0.15in}{Paul Halmos} \\
\vspace{1.0in}
\tiny Barton Willis, Creative Commons CC0 1.0 Universal, \the\year \normalsize
}
\date{}
\begin{document}
\frame{\titlepage}
\begin{frame}
\begin{mydef} Let \(A\) be a subset of \(\reals\). We say that \(A\) is \emph{bounded above} provided
\[
\left(\exists M \in \reals \right) \left( \forall x \in A \right)(x \leq M).
\]
The number \(M\) is \emph{an upper bound for the set } \(A\).
We say that the set \(A\) is \emph{bounded below} provided
\[
\left(\exists M \in \reals \right) \left( \forall x \in A \right)(M \leq x).
\]
The number \(M\) is \emph{a lower bound for the set } \(A\). If \(A\) is bounded below and bounded above, we say \(A\) is \emph{bounded}.
\end{mydef}
\begin{numberlist}
\item If \(M\) is an upper bound for a set \(A\), and \(M \leq M^\prime\),
then \(M^\prime\) is an upper bound for \(A\).
\item So we need to say \emph{a (not the) upper bound}.
\item Similarly, lower bounds are not unique.
\end{numberlist}
\end{frame}
\begin{frame}{Bounded details}
\begin{numberlist}
\item Notice that we do \emph{not} require that an upper bound for a set \(A\) to be
a member of \(A\).
\vspace{0.15in}
\item Same for a lower bound.
\vspace{0.15in}
\item Since we require that an upper bound be a \emph{real number}, we disallow infinity from being an upper bound. If we did, every set would be bounded.
\vspace{0.15in}
\item Although infinity is a number, it isn't a \emph{real} number.
\end{numberlist}
\end{frame}
\begin{frame}{Bounded and unbounded examples}
\begin{myex}
\begin{numberlist}
\item The empty set is bounded above by 0.
\vspace{0.15in}
\item Actually every real number is an upper bound for the empty set.
\vspace{0.15in}
\item Every real number is a lower bound for the empty set.
\vspace{0.15in}
\item The interval \([0,1] \) is bounded above by 1.
\vspace{0.15in}
\item The interval \([0,1] \) is bounded above by 107.
\vspace{0.15in}
\item The interval \([0,\infty) \) is bounded below by 0.
\vspace{0.15in}
\item The interval \([0,\infty) \) is not bounded above.
\end{numberlist}
\end{myex}
\end{frame}
\begin{frame}{Being least}
\begin{mydef} Let \(A\) be a subset of \(\reals\). The set \(A\) has a \emph{least member} provided
\[
\left(\exists a^\star \in A \right) \left( \forall a \in A \right)
(a^\star \leq a).
\]
We say that \(a^\star\) is a least member. The set \(A\) has a \emph{greatest
member} provided
\[
\left(\exists a^\star \in A \right) \left( \forall a \in A \right)
(a \leq a^\star).
\]
\end{mydef}
\begin{numberlist}
\item Unlike a lower bound, we require that a least member of a set \(A\) be a member of the set.
\vspace{0.15in}
\item The same for a greatest member.
\end{numberlist}
\end{frame}
\begin{frame}{Uniqueness of being least}
\begin{myth} If a subset of the reals has a least member, it is unique.
\end{myth}
\begin{myproof} Let \(A \subset \reals\). Suppose \(x\) and \(x^\prime\) are least members of \(A\). Since \(x\) is a least member of \(A\) we have
\(x \in A\). But \(x^\prime\) is a least member, so \(x^\prime \leq x\).
Interchanging the roles of \(x\) and \(x^\prime\), we have
\(x \leq x^\prime\); therefore \(x = x^\prime\).
\end{myproof}
\begin{numberlist}
\item Equality is hard, inequality is easier.
\item We proved equality by proving two inequalities.
\end{numberlist}
\end{frame}
\begin{frame}{Well ordering principle}
\begin{myaxiom} Let \(A\) be a nonempty subset of \(\integers\) that is \emph{bounded below}. Then \(A\) has a least member.
\end{myaxiom}
\begin{numberlist}
\item This is an axiom--we'll take it on faith.
\item Again, a least member of a set \(A\) \emph{must} be a member of \(A\).
\item Thus, the empty set does \emph{not} have a least member.
\item The qualification that the set be nonempty for it to have a least member is crucial.
\end{numberlist}
\begin{myth} Let \(A \subset \integers\) be (i) \emph{nonempty} and (ii) \emph{bounded above}. Then \(A\) has a greatest member.
\end{myth}
\end{frame}
\begin{frame}{Well ordering principle for the reals?}
\textbf{Question} Are the real numbers well-ordered? That is, does every
nonempty subset of \(\reals\) that is bounded below have a least member?
\vspace{0.5in}
\textbf{Answer} No. The interval \((0,1)\) is nonempty and bounded below, but
it doesn't have a least member. Although zero is less than
every member of \((0,1)\), since zero isn't a member of \((0,1)\), it is
not a least member.
\end{frame}
\begin{frame}{Existence of the floor}
Let \(x \in \reals_{\geq 0}\). Define the set \(M\) by
\(
M = \{k \in \reals \mid k \leq x \}
\).
\begin{numberlist}
\item Since \(x \geq 0\), it follows that \(0 \in M\).
\vspace{0.15in}
\item So, the set \(M\) is nonempty.
\vspace{0.15in}
\item Further the set \(M\) is bounded above by \(x\).
\vspace{0.15in}
\item The well ordering principle tells us that \(M\) as
a least member.
\vspace{0.15in}
\item Actually, the least member is unique.
\vspace{0.15in}
\item Of course the least member depends on \(x\).
\vspace{0.15in}
\item Something that (i) depends on \(x\) and (ii) is unique defines a function!
\vspace{0.15in}
\item We've used the well ordering principle to define the \emph{floor function}
for nonnegative inputs.
\item Similarly, we can define the ceiling function for nonnegative inputs.
\item The putative identity \(\lfloor x \rfloor = - \lceil -x \rceil \) extends the floor and ceiling functions from the nonnegative numbers to the reals.
\end{numberlist}
\end{frame}
\end{document}