-
Notifications
You must be signed in to change notification settings - Fork 0
/
math-460-set-complements.tex
252 lines (177 loc) · 6.37 KB
/
math-460-set-complements.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\newcommand{\true}{\mathrm{true}}
\newcommand{\false}{\mathrm{false}}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}[]
\newtheorem{hurestic}{Hurestic}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\usepackage{pifont}
\newenvironment{checklist}{
\begin{enumerate}[\ding{51}]
\addtolength{\itemsep}{-0.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\newcommand{\llnot}{\lnot \,} % is accepted
\subtitle{%Lesson 6 \\ \vspace{1.0in}
The whole problem with the world is that fools and fanatics are always so certain of themselves, and wiser people so full of doubts. \\ \vspace{0.25in} Bertrand Russel}
\title{\textbf{Set complements}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
\date{}
%\usepackage{courier}
%\lstset{basicstyle=\ttfamily\footnotesize,breaklines=true}
%\lstset{framextopmargin=50pt,frame=bottomline}
%\begin{document}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{The set complement}
\begin{mydef} Let \( U \) be the universal set. For any set \(A\), we define its complement \(A^c\) by \(A^c = U \setminus A\).
\end{mydef}
\begin{checklist}
\item We have
\[
(x \in A^c) \equiv (x \in U) \land (x \notin A) .
\]
\item Assisted by Mr.\ DeMorgan, we have
\[
(x \notin A^c) \equiv (x \notin U) \lor (x \in A) .
\]
\end{checklist}
\end{frame}
\begin{frame}{Every definition deserves a theorem}
\begin{myth} Let \(A\) be a set. We have
\begin{align*}
\varnothing^c &= U, \\
U^c &= \varnothing, \\
(A^c)^c & = A, \\
A \cap A^c &= \varnothing, \\
A \cup A^c &= U.
\end{align*}
\end{myth}
\end{frame}
\begin{frame}
\begin{myproof}[ \(U = \varnothing^c\)] We have
\[
\varnothing^c = \{ u \in U \mid x \notin \varnothing \} = \{ u \in U \mid \true \} = U.
\]
\end{myproof}
\begin{checklist}
\vspace{0.2in}
\item We used the fact that \( (\forall x)(x \notin \varnothing) \equiv \true\).
\vspace{0.2in}
\item The proof is a string of equalities. The conclusion of the proof is to compare the far left to the far right of the string.
\vspace{0.2in}
\item Alternatively, we could show that \(U \subset \varnothing^c\) and \(\varnothing^c \subset U\). But I think this proof is more clear.
\end{checklist}
\end{frame}
\begin{frame}
\begin{myproof}[\((A^c)^c = A\)] Let \(A\) be a set. We have
\[
(A^c)^c = \{ u \in U \mid u \notin A^c \} = \{ u \in U \mid u \in A \} = A .
\]
\end{myproof}
\begin{checklist}
\item Arguably this proof makes too large a jump in logic from \(u \notin A^c \) to \(u \in A\).
\item Here is a fix:
\begin{align*}
\{ u \in U \mid u \notin A^c \} &= \{ u \in U \mid (u \notin U) \lor (u \in A)\}, \\
&= \{ u \in U \mid \false \lor (u \in A)\} , \\
&= \{ u \in U \mid u \in A\},\\
& = A.
\end{align*}
\item We have
\[
x \in A \setminus B \equiv (x \in A) \land (x \notin B)
\]
\item So
\[
x \notin A \setminus B \equiv \lnot ((x \in A) \land (x \notin B)) = (x \notin A) \lor (x \in B).
\]
\end{checklist}
\end{frame}
\begin{frame}
\begin{myproof}[\( \varnothing = U^c\)]
We've already shown that \(\varnothing^c = U\). Using this fact, we have
\[
\varnothing = (\varnothing^c)^c = (U)^c.
\]
\end{myproof}
\begin{checklist}
\item Our proof uses the fact that for all sets \(A\), we have \((A^c)^c = A\).
\vspace{0.2in}
\item With malice aforethought, we proved the statements in the proposition in a different order than they were presented.
\vspace{0.2in}
\item We switched up the order to make use of \((A^c)^c = A\) in a later proof.
\end{checklist}
\end{frame}
\begin{frame}{Looks like homework}
\begin{myproof}[ \(A \cap A^c = \varnothing\)]
(This looks like it should be homework--it's all up to you. You are certainly allowed to use all the results we have proved so far.)
\end{myproof}
\vspace{0.2in}
\begin{myproof}[ \(A \cup A^c = U \)]
(This looks like it should be homework--it's all up to you. You are certainly allowed to use all the results we have proved so far.)
\end{myproof}
\end{frame}
\end{document}