-
Notifications
You must be signed in to change notification settings - Fork 0
/
math-460-functions.tex
288 lines (203 loc) · 8.21 KB
/
math-460-functions.tex
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
\documentclass[fleqn]{beamer}
%\usetheme[height=7mm]{Rochester}
\usetheme{Boadilla} %{Rochester}
\setbeamertemplate{footline}[text line]{%
\parbox{\linewidth}{\vspace*{-8pt}\hfill\insertshortauthor\hfill\insertpagenumber}}
\setbeamertemplate{navigation symbols}{}
%\author[BW]{Dr.\ Barton Willis}
\usepackage{amsmath}\usepackage{amsthm}
\usepackage{isomath}
\usepackage{upgreek}
\usepackage{comment,enumerate,xcolor}
\usepackage[english]{babel}
\usepackage[final,babel]{microtype}%\usepackage[dvipsnames]{color}
\usefonttheme{professionalfonts}
%\usefonttheme{serif}
\newcommand{\reals}{\mathbf{R}}
\newcommand{\complex}{\mathbf{C}}
\newcommand{\integers}{\mathbf{Z}}
\newcommand{\rationals}{\mathbf{Q}}
\DeclareMathOperator{\range}{range}
\DeclareMathOperator{\domain}{dom}
\DeclareMathOperator{\dom}{dom}
\DeclareMathOperator{\codomain}{codomain}
\DeclareMathOperator{\sspan}{span}
\DeclareMathOperator{\F}{F}
\DeclareMathOperator{\G}{G}
\DeclareMathOperator{\B}{B}
\DeclareMathOperator{\D}{D}
\DeclareMathOperator{\id}{id}
\DeclareMathOperator{\ball}{ball}
\usepackage{graphicx}
\usepackage{color}
\usepackage{amsmath}
\DeclareMathOperator{\nullspace}{nullity}
\theoremstyle{definition}
\newtheorem{mydef}{Definition}
\newtheorem{myqdef}{Quasi-definition}
\newtheorem{myex}{Example}
\newtheorem{myth}{Theorem}
\newtheorem{myfact}{Fact}
\newtheorem{metathm}{Meta Theorem}
\newtheorem{Question}{Question}
\newtheorem{Answer}{Answer}
\newtheorem{myproof}{Proof}
\newtheorem{mycounterexample}{Counterexample}
\newtheorem{hurestic}{Hurestic}
%\usepackage{array} % for \newcolumntype macro
%\newcolumntype{L}{>{$}l<{$}} % math-mode version of "l" column type
\newenvironment{alphalist}{
\vspace{-0.4in}
\begin{enumerate}[(a)]
\addtolength{\itemsep}{1.0\itemsep}}
{\end{enumerate}}
\usepackage{pifont}
\newenvironment{checklist}{
\begin{enumerate}[\ding{51}]
\addtolength{\itemsep}{-0.0\itemsep}}
{\end{enumerate}}
\newenvironment{numberlist}
{\begin{enumerate}[(1)]
\addtolength{\itemsep}{-0.5\itemsep}}
{\end{enumerate}}
\usepackage{amsfonts}
\makeatletter
\def\amsbb{\use@mathgroup \M@U \symAMSb}
\makeatother
\usepackage{bbold}
\newcommand{\llnot}{\lnot \,} % is accepted
%\subtitle{Lesson 7}
\title{\textbf{Functions}}
%\author[Barton Willis] % (optional, for multiple authors)
%{Barton~Willis}%
%\institute[UNK] % (optional)
%{
% \inst{1}%
% ``The secret of getting ahead is getting started.'' Mark Twain
% }
\date{}
%\usepackage{courier}
%\lstset{basicstyle=\ttfamily\footnotesize,breaklines=true}
%\lstset{framextopmargin=50pt,frame=bottomline}
%\begin{document}
%--------
%usepackage[usenames,dvipsnames,svgnames,table]{color}
\begin{document}
\frame{\titlepage}
\begin{frame}{Functions}
\begin{checklist}
\item There is an elegant way of defining a function from at set \(A\) to a set \(B\)
purely in terms of a subset of \(A \times B\).
\vspace{0.2in}
\item And as we have seen, members of \(A \times B\) can be defined purely in terms
of sets.
\vspace{0.2in}
\item But we don't often think of a function this way.
\vspace{0.2in}
\item Functions usually have a formula (or recipe) for determining the output for
every input. But sometimes there is no known recipe--for example
\[
F(x) = \begin{cases} 1 & x \in \rationals \\ -1 & x \notin \rationals \end{cases}
\]
Last I checked, nobody knows the value of \(F(\uppi - \mathrm{e}) \).
But certainly \(F(107) = 1 \) and \(F(\sqrt{2}) = -1 \) .
%\item Rather, we'll think of a function has a machine-like thing that produces an output (a member of the \emph{range}) from an input (a member of the \emph{domain}).
\end{checklist}
\end{frame}
\begin{frame}{Functions}
To define a function \(F\) with domain \(A\) and formula \(\mbox{blob}\), we can
write
\[
F = x \in A \mapsto \mbox{blob}.
\]
In the rare cases that it's important to give the function a codomain, we can write
\[
F = x \in A \mapsto \mbox{blob} \in B,
\]
where \(\codomain(F) = B\). Generically for a function \(F\) with domain \(A\) and
codomain \(B\), we say that \(F\) is a function from \(A\) to \(B\).
\begin{example} The notation
\[
F = x \in [-1,1] \mapsto 2 x + 1
\]
is our compact way of writing: Define \(F(x) = 2x + 1 \) and \(\dom(F) = [-1,1] \).
\end{example}
\end{frame}
\begin{frame}{Function signature}
The notation \(F : A \to B\) means
\begin{enumerate}
\item \(F\) is a function.
\item \(\dom(F) = A \).
\item \(\codomain(F) = B\).
\end{enumerate}
\vspace{0.1in}
We'll say that \(A \to B\) is the \emph{signature} of a function. The signature of a function doesn't tell us its formula. It does tell us the domain of a function and it indicates what the outputs of the function can be.
\end{frame}
\begin{frame}{Range}
\begin{definition} For any function, we define
\[
\range(F) = \left \{F(x) \mid x \in \domain(F) \right \}.
\]
Thus \(\range(F)\) is the set of all outputs.
\end{definition}
\begin{myfact} Let \(F\) be a function. Then
\[
\left[ y \in \range(F) \right] \equiv \left(\exists x \in \domain(F) \right)(y = F(x)).
\]
\end{myfact}
\begin{example} Define \(F = x \in [-1,1] \mapsto 2 x + 1\). Then \(\frac{3}{2} \in \range(F)\) because \(\frac{1}{4} \in \domain(F)\) and \(F(\frac{1}{4}) = \frac{3}{2}\).
\end{example}
\end{frame}
\begin{frame}{Ontoness}
The codomain of a function tells us something about its outputs, but remember that the range and the codomain of a function need not be the same. For all functions \(F\), we have
\[
\range{F} \subset \codomain(F).
\]
\begin{mydef} A function is \emph{onto} if its range and codomain are equal. \end{mydef}
\begin{myex} \textbf{Question}: Is the sine function onto? \textbf{Answer} It is if its codomain is \([-1,1]\). But if its codomain is \(\reals\), then no it's not onto. There is no standard value for the codomain of the trigonometric functions, so the asking ``Is the sine function onto?'' is rubbish.\end{myex}
\end{frame}
\begin{frame}{Equality}
\begin{mydef} Functions \(F\) and \(G\) are \emph{equal } \(\dom(F) = \dom(G)\) and for all \(x \in \dom(F) \), we have \(F(x) = G(x)\). Equivalently
\[
(F = G) \equiv (\dom(F) = \dom(G)) \land (\forall x \in \dom(F))(F(x) = G(x)).
\]
\end{mydef}
\begin{enumerate}
\item The definition of function equality does not involve the codomain of the function. Thus two functions can be equal, but have unequal codomains.
\end{enumerate}
\begin{myex} The functions \(F = x \in [-1,1] \mapsto x \in [-1,1]\) and \(G = x \in [-1,1] \mapsto x \in \reals \) are equal, but \(F\) is onto and \(G\) is not onto. Thus
ontoness isn't a property of a function. \end{myex}
\end{frame}
\begin{frame}{Apply a function to a set}
\begin{mydef} Let \(F : A \to B\). For any subset \(A^\prime\) of \(A\) define
\[
F(A^\prime) = \{ F(x) | x \in A^\prime \}.
\]
Equivalently, we have
\[
y \in F(A^\prime) \equiv (\exists x \in A^\prime)(y = F(x)).
\]
\end{mydef}
\begin{myth} For all functions \(F\), we have \(F(\dom{F}) = \range(F) \). Further \(F(\varnothing) = \varnothing \). \end{myth}
\end{frame}
\begin{frame}{Inverse image}
\begin{mydef} Let \(F : A \to B\). For any subset \(B^\prime\) of \(B\) define
\[
F^{-1} (B^\prime) = \{ x \in A | F(x) \in B \}.
\]
Equivalently, we have
\[
x \in F^{-1} (B^\prime) \equiv F(x) \in B.
\]
\end{mydef}
\end{frame}
\begin{frame}
\begin{myth} Let \(F : X \to Y\) and let \(A\) and \(B\) be subsets of \(X\). Then \(F(A \cap B) = F(A) \cap F(B) \).
\end{myth}
\begin{myproof} Suppose \(y \in (F(A \cap B)\); we'll show that \(y \in F(A) \cap F(B) \). Since \(y \in (F(A \cap B)\), there is
\(x \in A \cap B\) such that \(y = F(x)\). But \(x \in A \cap B\) implies either \(x \in A\) or \(x \in B\). If \(x \in A\), we have \(y \in F(A\); similarly if \(x \in B\), we have \(y \in F(B)\). So
either \(y \in F(A)\) or \(y \in F(B)\) ; therefore \(y \in F(A) \cap F(B) \).
\quad Suppose \(y \in F(A) \cap F(B) \). We'll show that \(y \in F(A \cap B)\).
\end{myproof}
\end{frame}
\end{document}