Table of Contents
- EVA: Pre-training and Image Classification
- EVA Model Card
- Performance of MIM pre-trained EVA encoder on ImageNet-1K
- Performance of EVA-CLIP vision encoder on ImageNet-1K
- EVA-L: Learning better MIM representations from EVA-CLIP
- Setup
- Evaluate EVA on ImageNet-1K
- Evaluate EVA on ImageNet-1K variants (IN-V2, IN-ReaL, IN-Adv., IN-Ren., IN-Ske., ObjectNet)
- Evaluate EVA-CLIP on ImageNet-1K
- Pre-train EVA on the merged-30M image dataset
- Intermediate Fine-tune MIM pre-trained EVA on ImageNet-21K
- Fine-tuning EVA on ImageNet-1K with ImageNet-21K intermediate fine-tuned checkpoint
- Transferring EVA-CLIP vision encoder to ImageNet-1K
- Acknowledgement
We provide all pre-trained & fine-tuned EVAs for the community. The following table summarizes the basic statistics of MIM pre-trained EVA and image classification EVA.
model name | #param. | MIM pt ep | IN-21K ft ep | IN-1K ft ep | IN-1K top-1 | weight |
---|---|---|---|---|---|---|
eva_psz14 |
1.0B | 150 | - | - | - | 🤗 HF link (2GB ) |
eva_psz14to16 |
1.0B | 150 | - | - | - | 🤗 HF link (2GB ) |
eva_21k_224px_psz14 |
1.0B | 150 | 60 | - | - | 🤗 HF link (2GB ) |
eva_21k_1k_336px_psz14_ema |
1.0B | 150 | 60 | 10 | 89.6 | 🤗 HF link (4GB ) |
eva_21k_1k_560px_psz14_ema |
1.0B | 150 | 60 | 15 | 89.7 | 🤗 HF link (4GB ) |
eva_psz14to16
model interpolates the kernel size ofpatch_embed
from14x14
to16x16
. This is useful for object detection, instance segmentation & semantic segmentation, etc. Seeinterpolate_patch_14to16.py
for implementation details.- For MIM pre-trained EVA and EVA-CLIP, we use
deepspeed
fp16
format. IN-1K fine-tuned EVA weights are larger (4GB
v.s.2GB
) because ema updates models withfp32
format. The weights of other downstream tasks are also withfp32
format.
model | IN-1K | IN-V2 | IN-ReaL | IN-Adv. | IN-Ren. | IN-Ske. | ObjectNet |
---|---|---|---|---|---|---|---|
EVA (336px ) |
89.6 | 81.6 | 90.8 | 86.2 | 88.3 | 67.7 | 60.9 |
For reference, timm collects some open-sourced state-of-the-art models' image classification results here (IN-1K, IN-V2, IN-ReaL, IN-Adv., IN-Ren., IN-Ske.).
Compared with other open-sourced models, EVA achieves state-of-the-art performance in all the classification benchmarks.
Performance of EVA-CLIP vision encoder on ImageNet-1K
model | zero-shot (224px ) |
linear probing (224px ) |
linear probing (336px ) |
fine-tuning (224px ) |
fine-tuning (336px ) |
---|---|---|---|---|---|
EVA-CLIP | 78.5 (weight | log) | 86.5 (weight | log) | 86.5 (weight | log) | 89.1 (weight | log) | 89.4 (weight | log) |
We also evaluate the transfer learning ability of EVA-CLIP, which achieves the state-of-the-art top-1 accuracy on ImageNet-1K among all self-supervised learning approaches.
We show EVA-CLIP is not only performant in zero-shot recognition, but also can improve the representation quality of MIM pre-training.
EVA-L is a vanilla ViT-Large encoder (#layer=24; dim=1024; patch_size=14x14; #param: 303M
) pre-trained via MIM with vision features from EVA-CLIP as prediction targets. Therefore, during pre-training EVA-L learns MIM pre-text task while distills knowledge from a stronger teacher.
We adopt the MAE-style MIM pre-training with an asymmetric
encoder-decoder architecture (modeling_mae_pretrain.py
), and we provide the MIM-only pre-trained checkpoint (dataset / schedule: IN-21K / 150 epochs
) as well as MIM pre-trained + supervised intermediate fine-tuned checkpoint (dataset / schedule: IN-21K / 90 epochs
) for the community.
model name | enc #param. | IN-21K pt ep | IN-21K ft ep | weight | pt log |
---|---|---|---|---|---|
eva_l_psz14 |
303M | 150 | - | 🤗 HF link | link |
eva_l_psz14_21k_ft |
303M | 150 | 90 | 🤗 HF link | link |
Notice that for MAE-style ViTs,
q,k,v
all have bias term, which is different from the BEiT-style ViTs that onlyq&v
have bias.
model | init. ckpt | resolution | #param. | top-1 | weight | ft log |
---|---|---|---|---|---|---|
EVA-L | eva_l_psz14 |
196x196 |
304M | 88.0 | 🤗 HF link | link |
EVA-L | eva_l_psz14 |
336x336 |
304M | 88.6 | 🤗 HF link | link |
EVA-L | eva_l_psz14_21k_ft |
196x196 |
304M | 88.6 | 🤗 HF link | link |
EVA-L | eva_l_psz14_21k_ft |
336x336 |
304M | 89.2 | 🤗 HF link | link |
model | resolution | #param. | top-1 |
---|---|---|---|
InternImage-XL | 384x384 |
335M | 88.0 |
BEiT-L/16 | 512x512 |
306M | 88.6 |
BEiTv2-L/16 (prev. best) | 384x384 |
304M | 89.0 |
EVA-L/14 | 336x336 |
304M | 89.2 |
EVA-L can reach up to 89.2 top-1 accuracy on ImageNet-1K, which is very similar to the fine-tuned EVA-CLIP teacher (89.4 top-1 accuracy). To our knowledge, EVA-L is the best open-sourced large-sized vision encoder to date.
First, clone the repo and install required packages:
conda create --name eva python=3.8 -y
conda activate eva
git clone [email protected]:baaivision/EVA.git
cd eva
pip install torch==1.12.0+cu116 torchvision==0.13.0+cu116 torchaudio==0.12.0 --extra-index-url https://download.pytorch.org/whl/cu116
pip install -r requirements.txt
The core packages including: Pytorch version 1.12.0, torchvision version 0.13.0, timm version 0.5.4 and DeepSpeed version 0.7.5 etc.
We use the standard ImageNet-1K dataset. Download it from http://image-net.org. Then, move and extract the training and validation images to labeled subfolders, using the shell script.
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 89.622 Acc@5 98.930 loss 0.948
Evaluate the fine-tuned EVA (560px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=560
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_560px_psz14_ema_89p7.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_560px_psz14_ema_89p7.pt
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 89.712 Acc@5 98.958 loss 0.881
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-V2 with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/imagenetv2/ImageNetV2-matched-frequency
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--robust_test 'imagenet_v2' \
--data_path ${DATA_PATH} \
--eval_data_path ${DATA_PATH} \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 81.570 Acc@5 96.230 loss 1.274
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-ReaL with a single GPU on a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=1 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--real_labels real.json \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 90.828 Acc@5 98.683 loss 0.947
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-Adversarial with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/imagenet-a
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--robust_test 'imagenet_a' \
--data_path ${DATA_PATH} \
--eval_data_path ${DATA_PATH} \
--nb_classes 200 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 86.154 Acc@5 96.509 loss 0.979
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-Rendition with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/imagenet-r
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--robust_test 'imagenet_r' \
--data_path ${DATA_PATH} \
--eval_data_path ${DATA_PATH} \
--nb_classes 200 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 88.283 Acc@5 95.830 loss 0.965
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ImageNet-Sketch with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DATA_PATH=/path/to/imagenet_sketch
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH} \
--eval_data_path ${DATA_PATH} \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 67.724 Acc@5 87.964 loss 1.955
Evaluate the fine-tuned EVA (336px, patch_size=14
) on ObjectNet with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_21k_1k_336px_psz14_ema_89p6.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_1k_336px_psz14_ema_89p6.pt
DUMMY_DATA_PATH=/path/to/ImageNet-1K
DATA_PATH=/sharefs/baai-mmdataset/clip_benchmark_datasets/objectnet/objectnet-1.0/images
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--robust_test 'objectnet' \
--data_path ${DUMMY_DATA_PATH}/train \
--eval_data_path ${DATA_PATH} \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 60.907 Acc@5 82.768 loss 2.305
Evaluate the linear probing performance of EVA-CLIP vision encoder (224px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=224
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_clip_vis_enc_sz224_lincls_86p5.pth # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz224_lincls_86p5.pth
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--linear_probe \
--use_cls \
--dist_eval \
--eval
Expected results:
* Acc@1 86.462 Acc@5 98.034 loss 0.479
Evaluate the linear probing performance of EVA-CLIP vision encoder (336px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_clip_vis_enc_sz336_lincls_86p5.pth # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz336_lincls_86p5.pth
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--linear_probe \
--use_cls \
--dist_eval \
--eval
Expected results:
* Acc@1 86.498 Acc@5 98.026 loss 0.479
Evaluate the linear probing performance of EVA-CLIP vision encoder (224px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=224
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_clip_vis_enc_sz224_ftcls_89p1.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz224_ftcls_89p1.pt
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--dist_eval \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 89.074 Acc@5 98.710 loss 0.726
Evaluate the linear probing performance of EVA-CLIP vision encoder (336px, patch_size=14
) on ImageNet-1K val with a single node (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
crop_pct=1.0
EVAL_CKPT=/path/to/eva_clip_vis_enc_sz336_ftcls_89p4.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_vis_enc_sz336_ftcls_89p4.pt
DATA_PATH=/path/to/ImageNet-1K/
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--model ${MODEL_NAME} \
--finetune ${EVAL_CKPT} \
--input_size ${sz} \
--batch_size ${batch_size} \
--crop_pct ${crop_pct} \
--no_auto_resume \
--linear_probe \
--eval \
--enable_deepspeed
Expected results:
* Acc@1 89.378 Acc@5 98.792 loss 0.691
Structure of our merged-30M image dataset (click to expand)
merged_30m_pt
├── 21k
│ └── imagnet21k -> /path/to/ImageNet-21K
├── ade
│ └── training -> /path/to/ADEChallengeData2016/images/training
├── cc12m
│ └── pt_img_data -> /path/to/CC12M/pt_img_data
├── cc3m
│ └── train_image -> /path/to/cc-3m/conceptual-captions/train_image
├── coco
│ └── train2017 -> /path/to/coco/train2017
└── o365
└── pt_images -> /path/to/Objects365/pt_images
We use 16 nodes (total_bsz = 16*8*32 = 4096
) for pre-training (click to expand).
MODEL_NAME=eva_g_patch14_224
DATA_PATH=/path/to/merged_30m_pt
VAL_DATA_PATH=/path/to/ImageNet-1K # monitoring val loss
input_size=224
num_mask_patches=105 ### 224*224/14/14 * 0.4 ###
batch_size=32
update_freq=1
lr=1e-3
b2=0.98
eps=1e-6
dpr=0.1
ls=0.0
epochs=150
wmep=2
mixup=0.0
cj=0.0
zero_stage=1
save_ckpt_freq=1
teacher_type=clip
clip_model=ViT-L/14
cache_dir=/path/to/clip/large # "ViT-L/14": "https://openaipublic.azureedge.net/clip/models/b8cca3fd41ae0c99ba7e8951adf17d267cdb84cd88be6f7c2e0eca1737a03836/ViT-L-14.pt",
EXP_NAME=merge30M_${MODEL}_sz${input_size}_mask${num_mask_patches}_lr${lr}_b2${b2}_eps${eps}_dpr${dpr}_ls${ls}_bsz16x8x${batch_size}_ep${epochs}_wmep${wmep}_cj${cj}_ftpye${feature_type}_ltype${loss_type}_mixup${mixup}_abspos
OUTPUT_DIR=/path/to/output/${epochs}/${EXP_NAME}
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_eva_pretraining.py \
--data_path ${DATA_PATH} \
--val_data_path ${VAL_DATA_PATH} \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL} \
--teacher_type ${teacher_type} \
--clip_model ${clip_model} \
--cache_dir ${cache_dir} \
--input_size ${input_size} --second_input_size ${input_size} \
--num_mask_patches ${num_mask_patches} \
--layer_scale_init_value ${ls} \
--batch_size ${batch_size} \
--lr ${lr} \
--opt_betas 0.9 ${b2} \
--opt_eps ${eps} \
--drop_path ${dpr} \
--epochs ${epochs} \
--mixup ${mixup} \
--color_jitter ${cj} \
--warmup_epochs ${wmep} \
--update_freq ${update_freq} \
--clip_grad 3.0 \
--weight_decay 0.05 \
--rand \
--zero_stage ${zero_stage} \
--save_ckpt_freq ${save_ckpt_freq} \
--enable_deepspeed
We use 8 nodes (total_bsz = 8*8*64 = 4096
) for intermediate fine-tuning (click to expand).
MODEL_NAME=eva_g_patch14
sz=224
batch_size=64
update_freq=1
lr=1e-4
lrd=0.85
partial_freeze=0
ep=60
wmep=15
reprob=0.0
dpr=0.4
mixup=0.0
cutmix=1.0
zero_stage=1
crop_pct=1.0
b2=0.98
eps=1e-6
scale_low=0.5
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz8x8x${update_freq}x${batch_size}_lr${lr}_lrd${lrd}_b2${b2}_eps${eps}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_crop_pct${crop_pct}
# path to MIM pre-trained ckpt
PRETRAIN_CHKPT=/path/to/eva_psz14.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_psz14.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-21K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH} \
--disable_eval_during_finetuning \
--nb_classes 21841 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--lr ${lr} \
--layer_decay ${lrd} \
--opt_betas 0.9 ${b2} \
--opt_eps ${eps} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--weight_decay 0.05 \
--scale ${scale_low} 1.0 \
--use_checkpoint \
--enable_deepspeed
We use 4 nodes (total_bsz = 4*8*16 = 512
) for fine-tuning (click to expand).
MODEL_NAME=eva_g_patch14
sz=336 # or 560
batch_size=16
update_freq=1
lr=3e-5
lrd=0.95
warmup_lr=0.0
min_lr=0.0
weight_decay=0.05
partial_freeze=0
ep=10 # or 15
wmep=2
dpr=0.4
reprob=0.0
mixup=0.0
cutmix=0.0
zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}
# path to ImageNet-21K Intermediate fine-tuned ckpt
PRETRAIN_CHKPT=/path/to/eva_21k_224px_psz14.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_21k_224px_psz14.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--scale ${scale_low} 1.0 \
--lr ${lr} \
--warmup_lr ${warmup_lr} \
--min_lr ${min_lr} \
--layer_decay ${lrd} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--smoothing ${smoothing} \
--weight_decay ${weight_decay} \
--aa ${aa} \
--dist_eval \
--use_checkpoint \
--model_ema \
--model_ema_eval \
--enable_deepspeed
We use 5 nodes (total_bsz = 5*8*400 = 16000
) for linear probing EVA-CLIP vision encoder w/ 224px
inputs (click to expand).
MODEL_NAME=eva_g_patch14
sz=224
batch_size=400
update_freq=1
lr=1.0
lrd=1.0
warmup_lr=0.0
min_lr=0.0
weight_decay=0.0
partial_freeze=0
ep=90
wmep=10
dpr=0.0
reprob=0.0
mixup=0.0
cutmix=0.0
zero_stage=0
scale_low=0.08
crop_pct=1.0
smoothing=0.0
aa=None
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}
# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--scale ${scale_low} 1.0 \
--lr ${lr} \
--warmup_lr ${warmup_lr} \
--min_lr ${min_lr} \
--layer_decay ${lrd} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--smoothing ${smoothing} \
--weight_decay ${weight_decay} \
--aa ${aa} \
--dist_eval \
--linear_probe \
--use_cls
We use 5 nodes (total_bsz = 5*8*400 = 16000
) for linear probing EVA-CLIP vision encoder w/ 336px
inputs (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=400
update_freq=1
lr=0.6
lrd=1.0
warmup_lr=0.0
min_lr=0.0
weight_decay=0.0
partial_freeze=0
ep=90
wmep=10
dpr=0.0
reprob=0.0
mixup=0.0
cutmix=0.0
zero_stage=0
scale_low=0.08
crop_pct=1.0
smoothing=0.0
aa=None
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}
# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--scale ${scale_low} 1.0 \
--lr ${lr} \
--warmup_lr ${warmup_lr} \
--min_lr ${min_lr} \
--layer_decay ${lrd} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--smoothing ${smoothing} \
--weight_decay ${weight_decay} \
--aa ${aa} \
--dist_eval \
--linear_probe \
--use_cls
We use 4 nodes (total_bsz = 4*8*32 = 1024
) for fine-tuning EVA-CLIP vision encoder w/ 224px
inputs (click to expand).
MODEL_NAME=eva_g_patch14
sz=224
batch_size=32
update_freq=1
lr=3e-5
lrd=0.9
warmup_lr=0.0
min_lr=0.0
weight_decay=0.05
partial_freeze=0
ep=20
wmep=2
dpr=0.4
reprob=0.0
mixup=0.0
cutmix=0.0
zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}
# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--scale ${scale_low} 1.0 \
--lr ${lr} \
--warmup_lr ${warmup_lr} \
--min_lr ${min_lr} \
--layer_decay ${lrd} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--smoothing ${smoothing} \
--weight_decay ${weight_decay} \
--aa ${aa} \
--dist_eval \
--use_checkpoint \
--model_ema \
--model_ema_eval \
--enable_deepspeed
We use 4 nodes (total_bsz = 4*8*16 = 512
) for fine-tuning EVA-CLIP vision encoder w/ 336px
inputs (click to expand).
MODEL_NAME=eva_g_patch14
sz=336
batch_size=16
update_freq=1
lr=3e-5
lrd=0.9
warmup_lr=0.0
min_lr=0.0
weight_decay=0.05
partial_freeze=0
ep=20
wmep=2
dpr=0.4
reprob=0.0
mixup=0.0
cutmix=0.0
zero_stage=1
scale_low=0.08
crop_pct=1.0
smoothing=0.3
aa=rand-m9-mstd0.5-inc1
EXP_NAME=sz${sz}_cropscalelow${scale_low}_bsz4x8x${update_freq}x${batch_size}_lr${lr}_wmuplr${warmup_lr}_minlr${min_lr}_wd${weight_decay}_lrd${lrd}_partial_frz${partial_freeze}_ep${ep}_wmep${wmep}_reprob${reprob}_dpr${dpr}_mixup${mixup}_cutmix${cutmix}_aa${aa}_crop_pct${crop_pct}_sm${smoothing}
# path to EVA-CLIP vision encoder ckpt
PRETRAIN_CHKPT=/path/to/eva_clip_psz14_vision_enc.pt # https://huggingface.co/BAAI/EVA/blob/main/eva_clip_psz14_vision_enc.pt
OUTPUT_DIR=/path/to/output/{EXP_NAME}
DATA_PATH=/path/to/ImageNet-1K
python -m torch.distributed.launch --nproc_per_node=8 --nnodes=$NNODES --node_rank=$NODE_RANK \
--master_addr=$MASTER_ADDR --master_port=12355 --use_env run_class_finetuning.py \
--data_path ${DATA_PATH}/train \
--eval_data_path ${DATA_PATH}/val \
--nb_classes 1000 \
--data_set image_folder \
--output_dir ${OUTPUT_DIR} \
--log_dir ${OUTPUT_DIR}/tb_log \
--model ${MODEL_NAME} \
--finetune ${PRETRAIN_CHKPT} \
--input_size ${sz} \
--scale ${scale_low} 1.0 \
--lr ${lr} \
--warmup_lr ${warmup_lr} \
--min_lr ${min_lr} \
--layer_decay ${lrd} \
--epochs ${ep} \
--warmup_epochs ${wmep} \
--drop_path ${dpr} \
--reprob ${reprob} \
--mixup ${mixup} \
--cutmix ${cutmix} \
--batch_size ${batch_size} \
--update_freq ${update_freq} \
--crop_pct ${crop_pct} \
--zero_stage ${zero_stage} \
--partial_freeze ${partial_freeze} \
--smoothing ${smoothing} \
--weight_decay ${weight_decay} \
--aa ${aa} \
--dist_eval \
--use_checkpoint \
--model_ema \
--model_ema_eval \
--enable_deepspeed
This part of EVA is built using the awesome BEiT, BEiTv2, CLIP, MAE, timm and DeepSpeed libraries. Thanks for their wonderful works!