Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

CPU heavy consumption #84

Open
david-oliveira-br opened this issue Oct 24, 2022 · 7 comments
Open

CPU heavy consumption #84

david-oliveira-br opened this issue Oct 24, 2022 · 7 comments

Comments

@david-oliveira-br
Copy link

Hello guys , during some simple local tests I noticed my cpu processing topping 100% while running examples (mic or audio file). I spent some hours reviewing the api in a attempt to find a possible bottleneck but didnt find anything relevant yet. Do you guys have some recommendation or thoughts about it? thanks in advance

@laar789
Copy link

laar789 commented Mar 27, 2023

Hi. I just notice this, and your are totally right. It's like the moment we run client.start_stream_transcription, one core of the CPU gets completely occupied, and that will be a problem. @david-oliveira-br, have you found any solution to this?

@mikedavidson-evertz
Copy link

mikedavidson-evertz commented Mar 30, 2023

Hello! I noticed this same issue as well, where my CPU would spike to 100%. Interestingly enough, this only happens when building my code using python:3.9.16-slim-bullseye, ubuntu:20.04 or ubuntu:22.04 Docker images.

When I use python:3.9-alpine for my docker image, the CPU inside the container sits at around 1 - 5%!

Stepping through the transcribe sdk code and monitoring my CPU usage, I found the exact spot where my CPU spikes. The method that triggers the spike is here:

https://github.com/awslabs/amazon-transcribe-streaming-sdk/blob/develop/amazon_transcribe/client.py#L174

response = await self._session_manager.make_request(
            signed_request.uri,
            method=signed_request.method,
            headers=signed_request.headers.as_list(),
            body=signed_request.body,
        )

and more specifically, when stepping through that request call above, the spike happens when the stream is activated here:
https://github.com/awslabs/amazon-transcribe-streaming-sdk/blob/develop/amazon_transcribe/httpsession.py#L56

def _set_stream(self, stream: http.HttpClientStream):
        if self._stream is not None:
            raise HTTPException("Stream already set on AwsCrtHttpResponse object")
        self._stream = stream
        self._stream.completion_future.add_done_callback(self._on_complete)
        self._stream.activate() # <- this call triggers the spike

self._stream.active() calls into the awscrt lib here and this is where the spike happens:
https://github.com/awslabs/aws-crt-python/blob/main/awscrt/http.py#L286

  def activate(self):
        """Begin sending the request.

        The HTTP stream does nothing until this is called. Call activate() when you
        are ready for its callbacks and events to fire.
        """
        _awscrt.http_client_stream_activate(self) # <-- 100% CPU SPIKE HAPPENS HERE 

C code for the awscrt http_client_stream_activate python bindings above:

https://github.com/awslabs/aws-crt-python/blob/58de212a9288e64cdb5f698f782abf4281ba8bf6/source/http_stream.c#L301

Also, this spike occurs before I even begin transcribing any audio! It happens the moment this stream is activated.

Do you guys have any idea what's causing this? Thanks.

@mikedavidson-evertz
Copy link

mikedavidson-evertz commented Mar 30, 2023

Steps to recreate this issue

If you're on ubuntu 20.04 or 22.04, you can run this code directly using python3.9 and monitor you cpu usage with top

Note: Change the region in the transcribe client to the region you want to test with.

from amazon_transcribe.client import TranscribeStreamingClient

import asyncio


async def start_stream():
    transcribe_client = TranscribeStreamingClient(region="us-east-1")
    transcribe_stream = await transcribe_client.start_stream_transcription(
        language_code="en-US",
        media_sample_rate_hz=16000,
        media_encoding="pcm",
        language_model_name=None,
        vocabulary_name=None,
        vocab_filter_method=None,
        vocab_filter_name=None,
        show_speaker_label=None,
        enable_channel_identification=None,
        number_of_channels=None,
        enable_partial_results_stabilization=None,
        partial_results_stability=None,
        session_id=None,
    )

    # put a breakpoint here and look at your CPU usage.
    print("put breakpoint here")

    # loop so we can monitor cpu usage
    while True:
        pass


def main():
    asyncio.run(start_stream())


if __name__ == "__main__":
    main()

top CPU output:
image

Build the python code using docker

If you're not using ubuntu, you can build the code using Docker. Put that python code above in a main.py and the Dockerfile below in the same directory:

Note: Fill in your AWS creds in the dockerfile so it can authenticate with transcribe.

FROM ubuntu:20.04

ENV AWS_ACCESS_KEY_ID=<AWS_ACCESS_KEY_ID>
ENV AWS_SECRET_ACCESS_KEY=<AWS_SECRET_ACCESS_KEY>
ENV AWS_SESSION_TOKEN=<AWS_SESSION_TOKEN>
      
ARG DEBIAN_FRONTEND=noninteractive

RUN apt-get update && apt-get install -y software-properties-common && \
    add-apt-repository -y ppa:deadsnakes/ppa

RUN apt-get install --no-install-recommends -y \
    python3.9=3.9.16-1+focal1 \
    python3-pip \
    && apt-get clean && rm -rf /var/lib/apt/lists/*

RUN python3.9 -m pip install amazon-transcribe==0.6.1

WORKDIR /transcribe_high_cpu_test

COPY main.py ./

CMD ["python3.9", "main.py"]

Now build the image and run the image while monitoring your CPU usage.
Run these commands in the same directory as the python/Dockerfile.

docker build -t transcribe-cpu-usage-test .
docker run transcribe-cpu-usage-test:latest  

@gregcscott
Copy link

Hi - curious if there will be any progress on resolving this issue? We're encountering this with our current version of python (3.7.10) and centos (7:0.3)

@mark-sinclair
Copy link

Experiencing a similar issue to this -- activating more than 2 asynchronous streams and they seem to freeze on _awscrt.http_client_stream_activate(self) before anything happens.

I'm on MacOS and Python 3.9

Has anyone found a solution?

@mark-sinclair
Copy link

UPDATE

Seems to work if I upgrade from Python 3.9 to 3.12 -- perhaps because this allows awscrt to move to a newer version in my conda envs.

Python 3.9
awscrt 0.20.12 py39h6e6cb0c_4 conda-forge

Python 3.12
awscrt 0.23.1 py312h6d9cc1d_0 conda-forge

@dc65
Copy link

dc65 commented Dec 2, 2024

Same issue on Windows 10. When you run the Quick Start sample program (with a longer .wav file), one core goes to 100%. Using Process Explorer you can see that the offending thread has a Start Address _awscrt.pyd!!PyInit__awscrt+0xce650. I am using awscrt 0.16, Python 3.12.7. I tried a pip upgrade but I get "amazon-transcribe 0.6.2 requires awscrt~=0.16.0". It seems to have upgraded anyway, and the problem remains. There must be some busy looping going on somewhere - the code should mostly be just waiting for AWS to respond not busy looping. Anyone have a solution?

Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

6 participants