Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Query trained model #52

Open
foromer4 opened this issue Nov 5, 2017 · 0 comments
Open

Query trained model #52

foromer4 opened this issue Nov 5, 2017 · 0 comments

Comments

@foromer4
Copy link

foromer4 commented Nov 5, 2017

HI, first a big thank you for publishing this work.
I am trying to use a trained model and query it with a new probe image.
It seems to me a very imprtant functionality , after all that is what you train the network for, right?
But I couldn't find it anywhere. I tried writing something, but I get poor results.
here is what I came up with:
any insights would be most appreciated.
thanks,
Omer

import os
import cv2
import numpy as np
from model import DCGAN
from utils import get_image, image_save, save_images
import tensorflow as tf
from scipy.misc import imresize

flags = tf.app.flags
flags.DEFINE_integer("batch_size", 64, "The size of batch images [64]")
flags.DEFINE_integer("image_size", 128, "The size of image to use")
flags.DEFINE_string("checkpoint_dir", "/home/omer/work/sub_pixel/models",
                    "Directory name to read the checkpoints [checkpoint]")
flags.DEFINE_string("test_image_dir", "/home/omer/work/sub_pixel/data/celebA/valid",
                    "Directory name of the images to evaluate")
flags.DEFINE_string("out_dir", "/home/omer/work/sub_pixel/out", "Directory name of to save results in")

FLAGS = flags.FLAGS


def doresize(x, shape):
    x = np.copy((x + 1.) * 127.5).astype("uint8")
    y = imresize(x, shape)
    return y


def main():
    with tf.Session() as sess:
        dcgan = DCGAN(sess, image_size=FLAGS.image_size, image_shape=[FLAGS.image_size, FLAGS.image_size, 3],
                      batch_size=FLAGS.batch_size,
                      dataset_name='celebA', is_crop=False, checkpoint_dir=FLAGS.checkpoint_dir)
        res = dcgan.load(FLAGS.checkpoint_dir)
        if not res:
            print ("failed loading model from path:" + FLAGS.checkpoint_dir)
            return

        i = 0
        files = []
        num_batches = len(os.listdir(FLAGS.test_image_dir)) / FLAGS.batch_size
        completed_batches = 0
        input_images = np.zeros(shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3))
        for f in os.listdir(FLAGS.test_image_dir):
            try:
                img_path = os.path.join(FLAGS.test_image_dir, f)
                if os.path.isdir(img_path):
                    i += 1
                    continue
                img = get_image(img_path, FLAGS.image_size, False)
                files.append(f)
                input_images[i] = img

                if i == FLAGS.batch_size - 1 or i == len(os.listdir(FLAGS.test_image_dir)) - 1:
                    batch_ready(dcgan, input_images, sess, files)

                    i = 0
                    input_images = np.zeros(shape=(FLAGS.batch_size, FLAGS.image_size, FLAGS.image_size, 3))
                    files = []
                    completed_batches += 1
                    print('done batch {0} out of {1}'.format(completed_batches, num_batches))
                else:
                    i += 1
            except Exception as e:
                print("problem working on:" + f)
                print (str(e))
                i += 1


def batch_ready(dcgan, input_images, sess, files):
    input_resized = [doresize(xx, (32, 32, 3)) for xx in input_images]
    sample_input_resized = np.array(input_resized).astype(np.float32)
    sample_input_images = np.array(input_images).astype(np.float32)
    output_images = sess.run(fetches=[dcgan.G],
                             feed_dict={dcgan.inputs: sample_input_resized, dcgan.images: sample_input_images})
    save_results(output_images, files)


def save_results(output_images, files):
    for k in range(0, len(files)):
        out_path = os.path.join(FLAGS.out_dir, files[k] + '_.png')
        out_img = output_images[0][k]

        # out_correct = ((out_img + 1) * 127.5).astype(np.uint8)
        # out_correct = cv2.cvtColor(out_correct, cv2.COLOR_RGB2BGR)
        # cv2.imshow('image', out_correct)
        # cv2.waitKey(0)

        image_save(out_img, out_path)


if __name__ == '__main__':
    main()


Sign up for free to join this conversation on GitHub. Already have an account? Sign in to comment
Labels
None yet
Projects
None yet
Development

No branches or pull requests

1 participant