forked from ankane/onnxruntime-1
-
Notifications
You must be signed in to change notification settings - Fork 0
/
test_inference.cc
301 lines (255 loc) · 10.6 KB
/
test_inference.cc
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright (c) Microsoft Corporation. All rights reserved.
// Licensed under the MIT License.
#include "core/session/onnxruntime_cxx_api.h"
#include "providers.h"
#include <memory>
#include <vector>
#include <iostream>
#include <fstream>
#include <atomic>
#include <gtest/gtest.h>
#include "test_allocator.h"
#include "test_fixture.h"
#include "onnx_protobuf.h"
struct Input {
const char* name;
std::vector<int64_t> dims;
std::vector<float> values;
};
void RunSession(OrtAllocator* allocator, Ort::Session& session_object,
const std::vector<Input>& inputs,
const char* output_name,
const std::vector<int64_t>& dims_y,
const std::vector<float>& values_y,
Ort::Value* output_tensor) {
std::vector<Ort::Value> ort_inputs;
std::vector<const char*> input_names;
for (size_t i = 0; i < inputs.size(); i++) {
input_names.emplace_back(inputs[i].name);
ort_inputs.emplace_back(Ort::Value::CreateTensor<float>(allocator->Info(allocator), const_cast<float*>(inputs[i].values.data()), inputs[i].values.size(), inputs[i].dims.data(), inputs[i].dims.size()));
}
std::vector<Ort::Value> ort_outputs;
if (output_tensor)
session_object.Run(Ort::RunOptions{nullptr}, input_names.data(), ort_inputs.data(), ort_inputs.size(), &output_name, output_tensor, 1);
else {
ort_outputs = session_object.Run(Ort::RunOptions{nullptr}, input_names.data(), ort_inputs.data(), ort_inputs.size(), &output_name, 1);
ASSERT_EQ(ort_outputs.size(), 1);
output_tensor = &ort_outputs[0];
}
auto type_info = output_tensor->GetTensorTypeAndShapeInfo();
ASSERT_EQ(type_info.GetShape(), dims_y);
size_t total_len = type_info.GetElementCount();
ASSERT_EQ(values_y.size(), total_len);
float* f = output_tensor->GetTensorMutableData<float>();
for (size_t i = 0; i != total_len; ++i) {
ASSERT_EQ(values_y[i], f[i]);
}
}
template <typename T>
void TestInference(Ort::Env& env, T model_uri,
const std::vector<Input>& inputs,
const char* output_name,
const std::vector<int64_t>& expected_dims_y,
const std::vector<float>& expected_values_y,
int provider_type, OrtCustomOpDomain* custom_op_domain_ptr) {
Ort::SessionOptions session_options;
if (provider_type == 1) {
#ifdef USE_CUDA
ORT_THROW_ON_ERROR(OrtSessionOptionsAppendExecutionProvider_CUDA(session_options, 0));
std::cout << "Running simple inference with cuda provider" << std::endl;
#else
return;
#endif
} else if (provider_type == 2) {
#ifdef USE_MKLDNN
ORT_THROW_ON_ERROR(OrtSessionOptionsAppendExecutionProvider_Mkldnn(session_options, 1));
std::cout << "Running simple inference with mkldnn provider" << std::endl;
#else
return;
#endif
} else if (provider_type == 3) {
#ifdef USE_NUPHAR
ORT_THROW_ON_ERROR(OrtSessionOptionsAppendExecutionProvider_Nuphar(session_options, 0, ""));
std::cout << "Running simple inference with nuphar provider" << std::endl;
#else
return;
#endif
} else {
std::cout << "Running simple inference with default provider" << std::endl;
}
if (custom_op_domain_ptr) {
ORT_THROW_ON_ERROR(OrtAddCustomOpDomain(session_options, custom_op_domain_ptr));
}
Ort::Session session(env, model_uri, session_options);
auto default_allocator = std::make_unique<MockedOrtAllocator>();
// Now run
//without preallocated output tensor
RunSession(default_allocator.get(),
session,
inputs,
output_name,
expected_dims_y,
expected_values_y,
nullptr);
//with preallocated output tensor
Ort::Value value_y = Ort::Value::CreateTensor<float>(default_allocator.get(), expected_dims_y.data(), expected_dims_y.size());
//test it twice
for (int i = 0; i != 2; ++i)
RunSession(default_allocator.get(),
session,
inputs,
output_name,
expected_dims_y,
expected_values_y,
&value_y);
}
static constexpr PATH_TYPE MODEL_URI = TSTR("testdata/mul_1.onnx");
static constexpr PATH_TYPE CUSTOM_OP_MODEL_URI = TSTR("testdata/foo_1.onnx");
#ifdef ENABLE_LANGUAGE_INTEROP_OPS
static constexpr PATH_TYPE PYOP_FLOAT_MODEL_URI = TSTR("testdata/pyop_1.onnx");
#endif
class CApiTestWithProvider : public CApiTest,
public ::testing::WithParamInterface<int> {
};
// Tests that the Foo::Bar() method does Abc.
TEST_P(CApiTestWithProvider, simple) {
// simple inference test
// prepare inputs
std::vector<Input> inputs(1);
Input& input = inputs.back();
input.name = "X";
input.dims = {3, 2};
input.values = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// prepare expected inputs and outputs
std::vector<int64_t> expected_dims_y = {3, 2};
std::vector<float> expected_values_y = {1.0f, 4.0f, 9.0f, 16.0f, 25.0f, 36.0f};
TestInference<PATH_TYPE>(env_, MODEL_URI, inputs, "Y", expected_dims_y, expected_values_y, GetParam(), nullptr);
}
INSTANTIATE_TEST_CASE_P(CApiTestWithProviders,
CApiTestWithProvider,
::testing::Values(0, 1, 2, 3, 4));
struct OrtTensorDimensions : std::vector<int64_t> {
OrtTensorDimensions(Ort::CustomOpApi ort, const OrtValue* value) {
OrtTensorTypeAndShapeInfo* info = ort.GetTensorTypeAndShape(value);
std::vector<int64_t>::operator=(ort.GetTensorShape(info));
ort.ReleaseTensorTypeAndShapeInfo(info);
}
};
// Once we use C++17 this could be replaced with std::size
template <typename T, size_t N>
constexpr size_t countof(T (&)[N]) { return N; }
struct MyCustomKernel {
MyCustomKernel(Ort::CustomOpApi ort, const OrtKernelInfo* /*info*/) : ort_(ort) {
}
void Compute(OrtKernelContext* context) {
// Setup inputs
const OrtValue* input_X = ort_.KernelContext_GetInput(context, 0);
const OrtValue* input_Y = ort_.KernelContext_GetInput(context, 1);
const float* X = ort_.GetTensorData<float>(input_X);
const float* Y = ort_.GetTensorData<float>(input_Y);
// Setup output
OrtTensorDimensions dimensions(ort_, input_X);
OrtValue* output = ort_.KernelContext_GetOutput(context, 0, dimensions.data(), dimensions.size());
float* out = ort_.GetTensorMutableData<float>(output);
OrtTensorTypeAndShapeInfo* output_info = ort_.GetTensorTypeAndShape(output);
int64_t size = ort_.GetTensorShapeElementCount(output_info);
ort_.ReleaseTensorTypeAndShapeInfo(output_info);
// Do computation
for (int64_t i = 0; i < size; i++) {
out[i] = X[i] + Y[i];
}
}
private:
Ort::CustomOpApi ort_;
};
struct MyCustomOp : Ort::CustomOpBase<MyCustomOp, MyCustomKernel> {
void* CreateKernel(Ort::CustomOpApi api, const OrtKernelInfo* info) { return new MyCustomKernel(api, info); };
const char* GetName() const { return "Foo"; };
size_t GetInputTypeCount() const { return 2; };
ONNXTensorElementDataType GetInputType(size_t /*index*/) const { return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT; };
size_t GetOutputTypeCount() const { return 1; };
ONNXTensorElementDataType GetOutputType(size_t /*index*/) const { return ONNX_TENSOR_ELEMENT_DATA_TYPE_FLOAT; };
};
TEST_F(CApiTest, custom_op_handler) {
std::cout << "Running custom op inference" << std::endl;
std::vector<Input> inputs(1);
Input& input = inputs[0];
input.name = "X";
input.dims = {3, 2};
input.values = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f};
// prepare expected inputs and outputs
std::vector<int64_t> expected_dims_y = {3, 2};
std::vector<float> expected_values_y = {2.0f, 4.0f, 6.0f, 8.0f, 10.0f, 12.0f};
MyCustomOp custom_op;
Ort::CustomOpDomain custom_op_domain("");
custom_op_domain.Add(&custom_op);
TestInference<PATH_TYPE>(env_, CUSTOM_OP_MODEL_URI, inputs, "Y", expected_dims_y, expected_values_y, 0, custom_op_domain);
}
#if defined(ENABLE_LANGUAGE_INTEROP_OPS) && !defined(_WIN32) // on windows, PYTHONHOME must be set explicitly
TEST_F(CApiTest, test_pyop) {
std::cout << "Test model with pyop" << std::endl;
std::ofstream module("mymodule.py");
module << "class MyKernel:" << std::endl;
module << "\t"
<< "def __init__(self,A,B,C):" << std::endl;
module << "\t\t"
<< "self.a,self.b,self.c = A,B,C" << std::endl;
module << "\t"
<< "def compute(self,x):" << std::endl;
module << "\t\t"
<< "return x*2" << std::endl;
module.close();
std::vector<Input> inputs(1);
Input& input = inputs[0];
input.name = "X";
input.dims = {2, 2};
input.values = {1.0f, 2.0f, 3.0f, 4.0f};
std::vector<int64_t> expected_dims_y = {2, 2};
std::vector<float> expected_values_y = {2.0f, 4.0f, 6.0f, 8.0f};
TestInference<PATH_TYPE>(env_, PYOP_FLOAT_MODEL_URI, inputs, "Y", expected_dims_y, expected_values_y, 0, nullptr);
}
#endif
#ifdef ORT_RUN_EXTERNAL_ONNX_TESTS
TEST_F(CApiTest, create_session_without_session_option) {
constexpr PATH_TYPE model_uri = TSTR("../models/opset8/test_squeezenet/model.onnx");
Ort::Session ret(env_, model_uri, Ort::SessionOptions{nullptr});
ASSERT_NE(nullptr, ret);
}
#endif
TEST_F(CApiTest, create_tensor) {
const char* s[] = {"abc", "kmp"};
int64_t expected_len = 2;
auto default_allocator = std::make_unique<MockedOrtAllocator>();
Ort::Value tensor = Ort::Value::CreateTensor(default_allocator.get(), &expected_len, 1, ONNX_TENSOR_ELEMENT_DATA_TYPE_STRING);
ORT_THROW_ON_ERROR(OrtFillStringTensor(tensor, s, expected_len));
auto shape_info = tensor.GetTensorTypeAndShapeInfo();
int64_t len = shape_info.GetElementCount();
ASSERT_EQ(len, expected_len);
std::vector<int64_t> shape_array(len);
size_t data_len = tensor.GetStringTensorDataLength();
std::string result(data_len, '\0');
std::vector<size_t> offsets(len);
tensor.GetStringTensorContent((void*)result.data(), data_len, offsets.data(), offsets.size());
}
TEST_F(CApiTest, create_tensor_with_data) {
float values[] = {3.0f, 1.0f, 2.f, 0.f};
constexpr size_t values_length = sizeof(values) / sizeof(values[0]);
Ort::AllocatorInfo info("Cpu", OrtDeviceAllocator, 0, OrtMemTypeDefault);
std::vector<int64_t> dims = {4};
Ort::Value tensor = Ort::Value::CreateTensor<float>(info, values, values_length, dims.data(), dims.size());
float* new_pointer = tensor.GetTensorMutableData<float>();
ASSERT_EQ(new_pointer, values);
auto type_info = tensor.GetTypeInfo();
auto tensor_info = type_info.GetTensorTypeAndShapeInfo();
ASSERT_NE(tensor_info, nullptr);
ASSERT_EQ(1, tensor_info.GetDimensionsCount());
}
int main(int argc, char** argv) {
::testing::InitGoogleTest(&argc, argv);
int ret = RUN_ALL_TESTS();
//TODO: Linker on Mac OS X is kind of strange. The next line of code will trigger a crash
#ifndef __APPLE__
::google::protobuf::ShutdownProtobufLibrary();
#endif
return ret;
}