-
Notifications
You must be signed in to change notification settings - Fork 8
/
ops.py
138 lines (103 loc) · 5.18 KB
/
ops.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
import math
import numpy as np
import tensorflow as tf
from tensorflow.python.framework import ops
from utils import *
F = tf.flags.FLAGS
class batch_norm(object):
def __init__(self, epsilon=1e-5, momentum = 0.9, name="batch_norm"):
with tf.variable_scope(name):
self.epsilon = epsilon
self.momentum = momentum
self.name = name
def __call__(self, x, train=True):
return tf.contrib.layers.batch_norm(x,
decay=self.momentum,
updates_collections=None,
epsilon=self.epsilon,
scale=True,
is_training=train,
scope=self.name)
def minibatch_disc(input, num_kernels=10, kernel_size=5, scope="m_bat"):
'''
Modified from http://blog.aylien.com/introduction-generative-adversarial-networks-code-tensorflow/
'''
tensor_out = linear(input, num_kernels * kernel_size, scope=scope)
tensor_out = tf.reshape(tensor_out, (-1, num_kernels, kernel_size)) # [bat, B, C]
tensor_out = tf.expand_dims(tensor_out, 3) # [bat, B, C, 1]
diffs = tensor_out - tf.transpose(tensor_out, [3, 1, 2, 0]) # [bat, B, C, bat]
l1_norm = tf.reduce_sum(tf.abs(diffs), 2) # [bat, B, bat]
mb_feats = tf.reduce_sum(tf.exp(-l1_norm), 2) # [bat, B]
return tf.concat([input, mb_feats], 1)
def instance_norm(x):
# instance normalization
epsilon = 1e-9
mean, var = tf.nn.moments(x, [1, 2], keep_dims=True)
return tf.div(tf.subtract(x, mean), tf.sqrt(tf.add(var, epsilon)))
def binary_cross_entropy(preds, targets, name=None):
"""Computes binary cross entropy given `preds`.
For brevity, let `x = `, `z = targets`. The logistic loss is
loss(x, z) = - sum_i (x[i] * log(z[i]) + (1 - x[i]) * log(1 - z[i]))
Args:
preds: A `Tensor` of type `float32` or `float64`.
targets: A `Tensor` of the same type and shape as `preds`.
"""
eps = 1e-12
with ops.op_scope([preds, targets], name, "bce_loss") as name:
preds = ops.convert_to_tensor(preds, name="preds")
targets = ops.convert_to_tensor(targets, name="targets")
return tf.reduce_mean(-(targets * tf.log(preds + eps) +
(1. - targets) * tf.log(1. - preds + eps)))
def conv_cond_concat(x, y):
"""Concatenate conditioning vector on feature map axis."""
x_shapes = x.get_shape()
y_shapes = y.get_shape()
return tf.concat(3, [x, y * tf.ones([x_shapes[0], x_shapes[1], x_shapes[2], y_shapes[3]])])
def conv2d(input_, output_dim,
k_h=5, k_w=5, d_h=2, d_w=2, stddev=0.02, bias=True, pad='SAME',
name="conv2d"):
with tf.variable_scope(name):
w = tf.get_variable('w', [k_h, k_w, input_.get_shape()[-1], output_dim],
initializer=tf.truncated_normal_initializer(stddev=stddev))
conv = tf.nn.conv2d(input_, w, strides=[1, d_h, d_w, 1], padding=pad)
if bias == True:
biases = tf.get_variable('biases', [output_dim], initializer=tf.constant_initializer(0.0))
conv = tf.reshape(tf.nn.bias_add(conv, biases), conv.get_shape())
return conv
def deconv2d(input_, output_shape, k_h=3, k_w=3, d_h=2, d_w=2, stddev=0.02,
start_bias=0.0, bias=True, padding="SAME", name="deconv2d", with_w=False):
with tf.variable_scope(name):
# filter : [height, width, output_channels, in_channels]
w = tf.get_variable('w', [k_h, k_h, output_shape[-1], input_.get_shape()[-1]],
initializer=tf.random_normal_initializer(stddev=stddev))
try:
deconv = tf.nn.conv2d_transpose(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1], padding=padding)
# Support for verisons of TensorFlow before 0.7.0
except AttributeError:
deconv = tf.nn.deconv2d(input_, w, output_shape=output_shape,
strides=[1, d_h, d_w, 1])
if bias == True:
biases = tf.get_variable('biases', [output_shape[-1]],
initializer=tf.constant_initializer(start_bias))
deconv = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
if with_w:
return deconv, w, biases
else:
return deconv
def lrelu(x, leak=0.1, name="lrelu"):
return tf.maximum(x, leak * x)
def linear(input_, output_size, scope=None, bias=True, stddev=0.01, bias_start=0.0, with_w=False):
shape = input_.get_shape().as_list()
#print ('In linear::::::::::::: ', input_.get_shape())
with tf.variable_scope(scope or "Linear"):
matrix = tf.get_variable("Matrix", [shape[1], output_size], tf.float32,
tf.contrib.layers.xavier_initializer() if F.dataset == "mnist"
else tf.random_normal_initializer(stddev=stddev))
if bias == True:
bias = tf.get_variable("bias", [output_size],
initializer=tf.constant_initializer(bias_start))
if with_w:
return tf.matmul(input_, matrix) + bias, matrix, bias
else:
return tf.matmul(input_, matrix) + bias