forked from ml-explore/mlx-examples
-
Notifications
You must be signed in to change notification settings - Fork 1
/
bijectors.py
60 lines (46 loc) · 2.1 KB
/
bijectors.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
# Copyright © 2023-2024 Apple Inc.
from typing import Tuple
import mlx.core as mx
import mlx.nn as nn
class Bijector:
def forward_and_log_det(self, x: mx.array) -> Tuple[mx.array, mx.array]:
raise NotImplementedError
def inverse_and_log_det(self, y: mx.array) -> Tuple[mx.array, mx.array]:
raise NotImplementedError
class AffineBijector(Bijector):
def __init__(self, shift_and_log_scale: mx.array):
self.shift_and_log_scale = shift_and_log_scale
def forward_and_log_det(self, x: mx.array):
shift, log_scale = mx.split(self.shift_and_log_scale, 2, axis=-1)
y = x * mx.exp(log_scale) + shift
log_det = log_scale
return y, log_det
def inverse_and_log_det(self, y: mx.array):
shift, log_scale = mx.split(self.shift_and_log_scale, 2, axis=-1)
x = (y - shift) * mx.exp(-log_scale)
log_det = -log_scale
return x, log_det
class MaskedCoupling(Bijector):
def __init__(self, mask: mx.array, conditioner: nn.Module, bijector: Bijector):
"""Coupling layer with masking and conditioner."""
self.mask = mask
self.conditioner = conditioner
self.bijector = bijector
def apply_mask(self, x: mx.array, func: callable):
"""Transforms masked indices of `x` conditioned on unmasked indices using `func`."""
x_masked = mx.where(self.mask, 0.0, x)
bijector_params = self.conditioner(x_masked)
y, log_det = func(bijector_params)
log_det = mx.where(self.mask, log_det, 0.0)
y = mx.where(self.mask, y, x)
return y, mx.sum(log_det, axis=-1)
def forward_and_log_det(self, x: mx.array):
"""Transforms masked indices of `x` conditioned on unmasked indices using bijector."""
return self.apply_mask(
x, lambda params: self.bijector(params).forward_and_log_det(x)
)
def inverse_and_log_det(self, y: mx.array):
"""Transforms masked indices of `y` conditioned on unmasked indices using bijector."""
return self.apply_mask(
y, lambda params: self.bijector(params).inverse_and_log_det(y)
)