-
Notifications
You must be signed in to change notification settings - Fork 69
/
preprocessing.py
39 lines (32 loc) · 1.23 KB
/
preprocessing.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
import torch as th
class Normalize(object):
def __init__(self, mean, std):
self.mean = th.FloatTensor(mean).view(1, 3, 1, 1)
self.std = th.FloatTensor(std).view(1, 3, 1, 1)
def __call__(self, tensor):
tensor = (tensor - self.mean) / (self.std + 1e-8)
return tensor
class Preprocessing(object):
def __init__(self, type):
self.type = type
if type == '2d':
self.norm = Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
elif type == '3d':
self.norm = Normalize(mean=[110.6, 103.2, 96.3], std=[1.0, 1.0, 1.0])
def _zero_pad(self, tensor, size):
n = size - len(tensor) % size
if n == size:
return tensor
else:
z = th.zeros(n, tensor.shape[1], tensor.shape[2], tensor.shape[3])
return th.cat((tensor, z), 0)
def __call__(self, tensor):
if self.type == '2d':
tensor = tensor / 255.0
tensor = self.norm(tensor)
elif self.type == '3d':
tensor = self._zero_pad(tensor, 16)
tensor = self.norm(tensor)
tensor = tensor.view(-1, 16, 3, 112, 112)
tensor = tensor.transpose(1, 2)
return tensor