-
Notifications
You must be signed in to change notification settings - Fork 35
/
FindTrimDrake.m
117 lines (71 loc) · 2.3 KB
/
FindTrimDrake.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
function [x0, u0, lib] = FindTrimDrake(p, lib, gains)
%% find fixed point
initial_guess = [0; 12; 0; 0; p.umax(3)];
disp('Searching for fixed point...');
prog = NonlinearProgram(5);
func = @(in) tbsc_model_less_vars(in(1:2), in(3:5), p.parameters);
% min_xdot = 5;
% max_xdot = 30;
%
% min_pitch = -1;
% max_pitch = 1;
c = FunctionHandleConstraint( zeros(6,1), zeros(6,1), 5, func);
c.grad_method = 'numerical';
prog = prog.addConstraint(c);
c_input_limits = BoundingBoxConstraint([-Inf; -Inf; p.umin], [Inf; Inf; p.umax]);
prog = prog.addConstraint(c_input_limits);
%c2 = BoundingBoxConstraint( [ 0.1; 10; -.5; -.5; 0 ], [1; 30; .5; .5; 4] );
%p = p.addConstraint(c2);
tic
[x, objval, exitflag] = prog.solve( initial_guess );
toc
assert(exitflag == 1, ['Solver error: ' num2str(exitflag)]);
%full_state = zeros(12,1);
%full_state(5) = x(1);
%full_state(7) = x(2);
%p.dynamics(0, full_state, x(3:5));
x0 = zeros(12, 1);
x0(5) = x(1);
x0(7) = x(2);
x0 = ConvertDrakeFrameToEstimatorFrame(x0);
u0 = zeros(3,1);
u0(1) = x(3);
u0(2) = x(4);
u0(3) = x(5);
disp('Fixed point found:');
disp('x0:')
disp(x0');
disp('u0:')
disp(u0');
%% build lqr controller based on that trim
% I'd like to get Q and R tuned to give something close to APM's nominal
% PID values (omitting I since LQR can't do that)
%
% Roll:
% P: 0.4
% I: 0.04
% D: 0.02
%
% Pitch:
% P: 0.4
% I: 0.04
% D: 0.02
%
% Yaw:
% P: 1.0
% I: 0
% D: 0
% WORKING WELL 09/03/2015
% Q = diag([0 0 0 10 30 .25 0.1 .0001 0.0001 .001 .001 .1]);
% Q(1,1) = 1e-10; % ignore x-position
% Q(2,2) = 1e-10; % ignore y-position
% Q(3,3) = 1e-10; % ignore z-position
%R = diag([35 35 35]);
%R_values = [35 50 25];
[A, B, C, D, xdot0, y0] = p.linearize(0, x0, u0);
%% check linearization
%(A*(x0-x0) + B*(u0-u0) + xdot0) - p.dynamics(0, x0, u0)
%(A*.1*ones(12,1) + B*.1*ones(3,1) + xdot0) - p.dynamics(0, x0+.1*ones(12,1), u0+.1*ones(3,1))
%% add a bunch of controllers
lib = AddTiqrControllers(lib, 'TI-straight', A, B, x0, u0, gains);
end