-
Notifications
You must be signed in to change notification settings - Fork 0
/
vec3.h
161 lines (130 loc) · 3.62 KB
/
vec3.h
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
#pragma once
#include <cmath>
#include <iostream>
class vec3
{
public:
double e[3];
vec3() : e{0.0,0.0,0.0} {}
vec3(double e0, double e1, double e2) : e{e0, e1, e2} {}
double x() const { return e[0];}
double y() const { return e[1];}
double z() const { return e[2];}
double r() const { return e[0];}
double g() const { return e[1];}
double b() const { return e[2];}
vec3 operator-() const { return vec3(-e[0], -e[1], -e[2]); } // Unary operator
double operator[](int i) const { return e[i]; }
double& operator[](int i) { return e[i]; }
vec3& operator+=(const vec3 &v)
{
e[0] += v.e[0];
e[1] += v.e[1];
e[2] += v.e[2];
return *this;
}
vec3& operator*=(const double d)
{
e[0] *= d;
e[1] *= d;
e[2] *= d;
return *this;
}
vec3& operator/=(const double t)
{
return *this *= 1/t;
}
double length_squared() const
{
return e[0]*e[0] + e[1]*e[1] + e[2]*e[2];
}
double length() const
{
return sqrt(this->length_squared());
}
inline static vec3 random()
{
return vec3(random_double(), random_double(), random_double());
}
inline static vec3 random(double min, double max)
{
return vec3(random_double(min, max), random_double(min, max), random_double(min, max));
}
// Returns true if the vector is close to zero in all dimensions.
bool near_zero()
{
const double s = 1e-8;
return (fabs(e[0] < s) && fabs(e[1] < s) && fabs(e[2] < s));
}
};
using point3 = vec3;
using color = vec3;
// vec3 Utility Functions
inline std::ostream& operator<<(std::ostream& out, const vec3& v)
{
return out << v.e[0] << ' ' << v.e[1] << ' ' << v.e[2];
}
inline vec3 operator+(const vec3& u, const vec3& v)
{
return vec3(u.e[0] + v.e[0], u.e[1] + v.e[1], u.e[2] + v.e[2]);
}
inline vec3 operator-(const vec3& u, const vec3& v)
{
return vec3(u.e[0] - v.e[0], u.e[1] - v.e[1], u.e[2] - v.e[2]);
}
inline vec3 operator*(const vec3& u, const vec3& v)
{
return vec3(u.e[0] * v.e[0], u.e[1] * v.e[1], u.e[2] * v.e[2]);
}
inline vec3 operator*(double t, const vec3& v)
{
return vec3(t * v.e[0], t * v.e[1], t * v.e[2]);
}
inline vec3 operator*(const vec3& v, double t)
{
return t * v;
}
inline vec3 operator/(const vec3& v, double t)
{
return (1/t) * v;
}
inline double dot(const vec3& u, const vec3& v)
{
return u.e[0] * v.e[0] + u.e[1] * v.e[1] + u.e[2] * v.e[2];
}
inline vec3 cross(const vec3& u, const vec3& v)
{
return vec3(u.e[1] * v.e[2] - u.e[2] * v.e[1],
u.e[2] * v.e[0] - u.e[0] * v.e[2],
u.e[0] * v.e[1] - u.e[1] * v.e[0]);
}
inline vec3 unit_vector(vec3 v)
{
return v / v.length();
}
vec3 random_in_unit_sphere()
{
while(true)
{
point3 p = vec3::random(-1, 1);
if (p.length_squared() >= 1)
continue;
return p;
}
}
vec3 random_in_unit_vector()
{
return unit_vector(random_in_unit_sphere());
}
vec3 random_in_hemisphere(const vec3& normal)
{
vec3 in_unit_sphere = random_in_unit_sphere();
if (dot(in_unit_sphere, normal) > 0.0) // In the same hemisphere as the normal
return in_unit_sphere;
else
return -in_unit_sphere;
}
inline vec3 reflect(const vec3& v, const vec3& n)
{
return v - 2*dot(v,n)*n;
}