-
Notifications
You must be signed in to change notification settings - Fork 0
/
e4070_otp_model.py
100 lines (92 loc) · 3.71 KB
/
e4070_otp_model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
import numpy as np
import matplotlib.pyplot as plt
### Define Constants (same as paper)
alpha_1 = 1.57e1
beta_1 = 8.00e-1
gamma_ron = 1.75e-1
alpha_2 = 8.877e1
beta_2 = 9.789e1
alpha_3 = 2.100e0
beta_3 = 1.2e0
kappa = 7.089e3
c = 7.534e-2
p = 1.0
I_max = 7.774e1
### Define R, O, N
R = 1
O = 1
N = 21
### Define time axis
t_step = 1e-4
t_duration = 3.0
t_range = np.arange(0,t_duration,t_step)
### The helper function for the peri-receptor process
def filter_h(alpha, beta, t_range, R, O, N, stimulus = 'parabola', form = 'intensity'):
t_steps = len(t_range)
t_step = t_range[1] - t_range[0]
x_1 = np.zeros((t_steps,R,O,N))
x_2 = np.zeros((t_steps,R,O,N))
u = np.zeros((t_steps,R,O,N))
if stimulus == 'constant':
for i in range(N):
u = u + 5. * i
if stimulus == 'step':
for i in range(N):
u[(t_range>=0.5) * (t_range<=2.5),:,:,i] += 1. + 5. * i
if stimulus == 'ramp':
for i in range(N):
x = (1. + 5. * i)/1.8 * (t_range - 0.5) * (t_range>=0.5) * (t_range<=2.3) + (1. + 5. * i) * (1 - 5*(t_range - 2.3)) * (t_range>2.3) * (t_range<=2.5)
x = np.reshape(x, (len(x), 1, 1))
x = np.repeat(x, R, axis = 1)
x = np.repeat(x, O, axis = 2)
u[:,:,:,i] += x
if stimulus == 'parabola':
for i in range(N):
x = (1. + 5. * i) * ((t_range - 0.5)/1.9)**2.0 * (t_range>=0.5) * (t_range<=2.4) + (1. + 5. * i) * (1 - 10*(t_range - 2.4))**2. * (t_range>2.4) * (t_range<=2.5)
x = np.reshape(x, (len(x), 1, 1))
x = np.repeat(x, R, axis = 1)
x = np.repeat(x, O, axis = 2)
u[:,:,:,i] += x
if form == 'gradient':
u[:-1] = (u[1:] - u[:-1]) / t_step
u[-1] = u[-1] * 0.
#u = np.maximum(0., u)
for i in range(t_steps-1):
dx_1 = x_2[i,:,:,:]
dx_2 = alpha * alpha * (u[i,:,:,:] - x_1[i,:,:,:]) - 2 * alpha * beta * x_2[i,:,:,:]
dx_1[np.isnan(dx_1)] = 0.
dx_2[np.isnan(dx_2)] = 0.
x_2[i+1,:,:,:] = x_2[i,:,:,:] + t_step * dx_2
x_1[i+1,:,:,:] = x_1[i,:,:,:] + t_step * dx_1
return x_1
### Main callable function for the OTP model
def otp_model(alpha_1, beta_1, R, O, N, t_range, b, d, alpha_2, beta_2, kappa, alpha_3, beta_3, c, p, I_max, stimulus, filter_h = filter_h):
u_h = filter_h(alpha_1, beta_1, t_range, R, O, N, stimulus = stimulus)
u_h_grad = filter_h(alpha_1, beta_1, t_range, R, O, N, stimulus = stimulus, form = 'gradient')
v = np.maximum(0., u_h + u_h_grad * gamma_ron)
b = v * 0.0 + b
d = v * 0.0 + d
t_steps = len(t_range)
t_step = t_range[1] - t_range[0]
x_1 = v * 0.0
x_2 = v * 0.0
x_3 = v * 0.0
I = v * 0.0
for i in range(t_steps-1):
dx_1 = b[i,:,:,:] * v[i,:,:,:] * (1. - x_1[i,:,:,:]) - d[i,:,:,:] * x_1[i,:,:,:]
dx_2 = alpha_2 * x_1[i,:,:,:] * (1. - x_2[i,:,:,:]) - beta_2 * x_2[i,:,:,:] - kappa * np.power(np.maximum(x_2[i,:,:,:], 0), 0.66) * np.power(np.maximum(x_3[i,:,:,:], 0), 0.66)
dx_3 = alpha_3 * x_2[i,:,:,:] - beta_3 * x_3[i,:,:,:]
dx_1[np.isnan(dx_1)] = 0.
dx_2[np.isnan(dx_2)] = 0.
dx_3[np.isnan(dx_3)] = 0.
x_1[i+1,:,:,:] = x_1[i,:,:,:] + t_step * dx_1
x_2[i+1,:,:,:] = x_2[i,:,:,:] + t_step * dx_2
x_3[i+1,:,:,:] = x_3[i,:,:,:] + t_step * dx_3
I = x_2 / (x_2 + c ** p) * I_max
return u_h, v, x_1, x_2, x_3, I
# Example
u_h, v, x_1, x_2, x_3, I = otp_model(alpha_1, beta_1, R, O, N, t_range, 2., 100., alpha_2, beta_2, kappa, alpha_3, beta_3, c, p, I_max, "parabola")
fig, ax = plt.subplots()
for i in range(N):
ax.plot(t_range, x_2[:,:,:,i][:,0][:,0])
plt.show()