-
Notifications
You must be signed in to change notification settings - Fork 0
/
SimpleNN.py
52 lines (45 loc) · 1.79 KB
/
SimpleNN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
import torch
import torchvision
import torchvision.transforms as transforms
import torch.nn as nn
import torch.optim as optim
# Transformações para pré-processar os dados
transform = transforms.Compose([
transforms.ToTensor(), # Converte a imagem PIL para tensor
transforms.Normalize((0.5,), (0.5,)) # Normaliza os pixels para o intervalo [-1, 1]
])
# Baixando e carregando o conjunto de dados MNIST
trainset = torchvision.datasets.MNIST(root='./data', train=True, download=True, transform=transform)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=4, shuffle=True, num_workers=2)
# Definindo uma rede neural simples
class SimpleNN(nn.Module):
def __init__(self):
super(SimpleNN, self).__init__()
self.fc1 = nn.Linear(28*28, 128)
self.fc2 = nn.Linear(128, 64)
self.fc3 = nn.Linear(64, 10)
def forward(self, x):
x = x.view(-1, 28*28)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
# Instanciando o modelo, função de perda e otimizador
net = SimpleNN()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9)
# Treinando a rede neural
for epoch in range(5): # loop over the dataset multiple times
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad() # zero the parameter gradients
outputs = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step() # Does the update
running_loss += loss.item()
if i % 2000 == 1999: # Printa a cada 2000 mini-batches
print('[%d, %5d] loss: %.3f' % (epoch + 1, i + 1, running_loss / 2000))
running_loss = 0.0
print('Finished Training')