-
Notifications
You must be signed in to change notification settings - Fork 195
/
train_IAN.py
581 lines (426 loc) · 23.3 KB
/
train_IAN.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
### Introspective Adversarial Network Training Function
# A Brock, 2016
import argparse
import imp
import time
import logging
import itertools
import os
import string
import numpy as np
from path import Path
import theano
import theano.tensor as T
from theano.tensor.opt import register_canonicalize
from theano.sandbox.rng_mrg import MRG_RandomStreams as RandomStreams
import lasagne
from lasagne.layers import SliceLayer as SL
import metrics_logging
import GANcheckpoints
from collections import OrderedDict
import matplotlib
matplotlib.use('Agg')
import matplotlib.pyplot as plt
# from fuel.datasets import CelebA
from discgen_utils import plot_image_grid
## Utilities:
# to_tanh: transforms an array in the range [0,255] to the range [-1,1]
# from_tanh: transforms an array in the range [-1,1] to the range[0,255]
def to_tanh(input):
return 2.0*(input/255.0)-1.0
# return input/255.0
def from_tanh(input):
return 255.0*(input+1)/2.0
# return 255.0*input
### Make Training Functions Method
# This function defines and compiles the computational graphs that define the training, validation, and test functions.
def make_training_functions(cfg,model):
# Define input tensors
# Tensor axes are batch-channel-dim1-dim2
# Image Input
X = T.TensorType('float32', [False]*4)('X')
# Latent Input, for providing latent values from the main function
Z = T.TensorType('float32', [False]*2)('Z') # Latents
# Classification Tensor, only used if including a supervised or class-conditional task
y = T.TensorType('float32', [False]*2)('y')
# Ternary classification values
p1,p2,p3 = T.TensorType('int32',[False]*2)('p1'),T.TensorType('int32',[False]*2)('p2'),T.TensorType('int32',[False]*2)('p3')
# Shared and Utility Variables
X_shared = lasagne.utils.shared_empty(4, dtype='float32')
y_shared = lasagne.utils.shared_empty(2, dtype='float32')
Z_shared = lasagne.utils.shared_empty(2, dtype='float32')
p1_shared = lasagne.utils.shared_empty(2, dtype='int32')
p2_shared = lasagne.utils.shared_empty(2, dtype='int32')
p3_shared = lasagne.utils.shared_empty(2, dtype='int32')
pi = np.cast[theano.config.floatX](np.pi)
# Input layer
l_in = model['l_in']
# Output layer
l_out = model['l_out']
# Latent Layer
l_Z = model['l_Z']
# IAF latent layer:
l_Z_IAF = model['l_Z_IAF']
# Means
l_mu = model['l_mu']
# Log-sigmas
l_ls = model['l_ls']
# IAF Means
l_IAF_mu = model['l_IAF_mu']
# IAF logsigmas
l_IAF_ls = model['l_IAF_ls']
# Introspective loss layers
l_introspect = model['l_introspect']
# Adversarial Discriminator
l_discrim = model['l_discrim']
# Batch Indexing Parameters
batch_index = T.iscalar('batch_index')
batch_slice = slice(batch_index*cfg['batch_size'], (batch_index+1)*cfg['batch_size'])
# Define RNG
rng = RandomStreams(lasagne.random.get_rng().randint(1,69))
###############################################################################
# Step 1: Compute full forward pass, save the outputs of all relevant layers? #
###############################################################################
# Build the main computational graph
outputs = lasagne.layers.get_output([l_out]+[l_mu]+[l_ls]+[l_discrim]+[l_IAF_mu]+[l_IAF_ls]+l_introspect,{l_in:X})
# outputs = lasagne.layers.get_output([l_out]+[l_mu]+[l_ls]+[l_discrim]+l_introspect,{l_in:X})
# Reconstruction
X_hat = outputs[0]
# Latent means
Z_mu = outputs[1]
# Latent log-sigmas
Z_ls = outputs[2]
# Discriminator Output
p_X = outputs[3]
# Latent IAF mus
Z_IAF_mu = outputs[4]
# Latent IAF logsigma
Z_IAF_ls = outputs[5]
# Output of the encoder layers (selected for introspection) as a function of the input image
g_X = outputs[6:]
# Build the second half of the computational graph
out_hat = lasagne.layers.get_output([l_discrim]+l_introspect,{l_in:X_hat})
# Discriminator Output given Reconstruction
p_X_hat = out_hat[0]
# Output of the encoder layers (selected for introspection) as a function of the reconstruction
g_X_hat = out_hat[1:]
# Discriminator output given random samples
p_X_gen = lasagne.layers.get_output(l_discrim,{l_in:lasagne.layers.get_output(l_out,{l_Z_IAF:Z})})
#################################
# Step 2: Define loss functions #
#################################
# Orthogonal normalization for all parameters
# Define orthonormal residual
def ortho_res(z):
s = 0
for x in z:
if x.name[-1] is 'W' and x.ndim==4:
y = T.batched_tensordot(x,x.dimshuffle(0,1,3,2),[[1,3],[1,2]])
y-=T.eye(x.shape[2],x.shape[3]).dimshuffle('x',0,1).repeat(x.shape[0],0)
s+=T.sum(T.abs_(y))
return(s)
# Define Pixel-wise reconstruction loss
pixel_loss = T.mean(2*T.abs_(X_hat-X+1e-8))
# KL Divergence between latents and Standard Normal prior
kl_div = -0.5 * T.mean(1 + 2*Z_ls - T.sqr(Z_mu) - T.exp(2 * Z_ls))
# kl_div = -T.maximum(0.5, T.mean(0.5 * (1 + 2*Z_ls - T.sqr(Z_mu) - T.exp(2 * Z_ls)) + Z_IAF_ls))
##########################
# Step 3: Define Updates #
##########################
# Get Parameters
# All network parameters, including log_sigma
params = lasagne.layers.get_all_params(l_out,trainable=True)
# Encoder Parameters
encoder_params = lasagne.layers.get_all_params(l_discrim,trainable=True)
# MADE parameters, along with a thing to prevent the IAF params from being trained
Z_params = [p for p in lasagne.layers.get_all_params(l_Z_IAF,trainable=True) if p not in lasagne.layers.get_all_params(l_discrim,trainable=True)]
print(Z_params)
# Decoder Params
decoder_params = [p for p in lasagne.layers.get_all_params(l_out,trainable=True) if p not in lasagne.layers.get_all_params(l_Z,trainable=True)]
# Define learning rate, with provisions made for annealing schedule
if isinstance(cfg['learning_rate'], dict):
learning_rate = theano.shared(np.float32(cfg['learning_rate'][0]))
else:
learning_rate = theano.shared(np.float32(cfg['learning_rate']))
# Adversarial Stuff
print('Calculating Adversarial Loss and Grads...')
# Regularization terms
l2_Z = cfg['reg']*lasagne.regularization.apply_penalty([p for p in lasagne.layers.get_all_params(l_Z_IAF,trainable=True,regularizable=True)\
if p not in lasagne.layers.get_all_params(l_discrim,trainable=True)],
lasagne.regularization.l2)
if 'ortho' in cfg:
print('Applying orthogonal regularization...')
l2_discrim = cfg['ortho']*lasagne.regularization.apply_penalty(lasagne.layers.get_all_params(l_Z,trainable=True,regularizable=True)\
+l_discrim.get_params(trainable=True,regularizable=True),
ortho_res)
l2_gen = cfg['ortho']*lasagne.regularization.apply_penalty([p for p in lasagne.layers.get_all_params(l_out,trainable=True,regularizable=True) if p not in encoder_params],
ortho_res)
# Adversarial Loss for Discriminator
# Discriminator loss for reconstructed and generated samples
# print(p_X_hat.shape[0])
discrim_g_loss = T.mean(T.nnet.categorical_crossentropy(p_X_hat,p2)) + T.mean(T.nnet.categorical_crossentropy(p_X_gen,p3))
#
# Discriminator loss
discrim_d_loss = T.mean(T.nnet.categorical_crossentropy(p_X, p1))
adversarial_discrim_loss = cfg['dg_weight']*discrim_g_loss+cfg['dd_weight']*discrim_d_loss
# Discriminator Accuracy
discrim_accuracy = (T.mean(T.eq(T.argmax(p_X,axis=1),T.argmax(p1,axis=1)))+T.mean(T.eq(T.argmax(p_X_hat,axis=1),T.argmax(p2,axis=1)))+T.mean(T.eq(T.argmax(p_X_gen,axis=1),T.argmax(p3,axis=1))))/3.0
# Feature Reconstruction Loss for Generator
feature_loss = T.cast(T.mean([T.mean(lasagne.objectives.squared_error(g_X[i],g_X_hat[i])) for i in xrange(len(g_X_hat))]),'float32')
# Adversarial loss for Generator
gen_recon_loss = T.mean(T.nnet.categorical_crossentropy(p_X_hat,p1))
gen_sample_loss = T.mean(T.nnet.categorical_crossentropy(p_X_gen,p1))
adversarial_gen_loss = cfg['agr_weight']*gen_recon_loss+cfg['ags_weight']*gen_sample_loss
# Updates for discriminator
discrim_updates = lasagne.updates.adam(T.grad(adversarial_discrim_loss+l2_discrim,encoder_params,consider_constant=[X_hat]),encoder_params,learning_rate,beta1=cfg['beta1'])
# Updates for Generator
gen_updates = lasagne.updates.adam(adversarial_gen_loss+\
cfg['recon_weight']*pixel_loss+\
cfg['feature_weight']*feature_loss+\
l2_gen,decoder_params,learning_rate,beta1=cfg['beta1'])
# Optional Inference mini-network updates--only updated based on reconstructions?
# Z_gen_updates = lasagne.updates.adam(adversarial_gen_loss+cfg['feature_weight']*feature_loss+cfg['recon_weight']*pixel_loss+kl_div,Z_params,learning_rate=learning_rate,beta1=cfg['beta1'])
# Z_gen_updates = lasagne.updates.adam(adversarial_gen_loss+cfg['feature_weight']*feature_loss+cfg['recon_weight']*pixel_loss+kl_div,Z_params,learning_rate=learning_rate,beta1=cfg['beta1'])
# Z_discrim_updates = lasagne.updates.adam(adversarial_gen_losscfg['feature_weight']*feature_loss+cfg['recon_weight']*pixel_loss+kl_div,Z_params,learning_rate=learning_rate,beta1=cfg['beta1'])
Z_gen_updates = lasagne.updates.adam(cfg['feature_weight']*feature_loss+\
cfg['recon_weight']*pixel_loss+\
adversarial_gen_loss+\
kl_div+\
l2_Z,
Z_params,
learning_rate=learning_rate,
beta1=cfg['beta1'])
for ud in Z_gen_updates:
gen_updates[ud] = Z_gen_updates[ud]
discrim_updates[ud] = Z_gen_updates[ud]
# Pixel-Wise MSE for reporting
error_rate = T.cast( T.mean( T.sqr(X_hat-X)), 'float32' )
# Sample function
sample = theano.function([Z],lasagne.layers.get_output(l_out,{l_Z_IAF:Z},deterministic=True),on_unused_input='warn')
# Inference Function--Infer non-IAF_latents given an input X
Zfn = theano.function([X],lasagne.layers.get_output(l_Z_IAF,{l_in:X},deterministic=True),on_unused_input='warn')
# gen dictionary
gd = OrderedDict()
gd['gen_recon_loss'] = gen_recon_loss
gd['gen_sample_loss'] = gen_sample_loss
gd['pixel_loss'] = pixel_loss
gd['feature_loss'] = feature_loss
gd['pixel_acc'] = 1-error_rate
# discrim dictionary
dd = OrderedDict()
dd['discrim_g_loss'] = discrim_g_loss
dd['discrim_d_loss'] = discrim_d_loss
dd['discrim_acc'] = discrim_accuracy
dd['pixel_loss'] = pixel_loss
dd['pixel_acc'] = 1-error_rate
update_gen = theano.function([batch_index],[gd[i] for i in gd],#[adversarial_gen_loss,pixel_loss,1-error_rate],
updates=gen_updates,
givens = {X: X_shared[batch_slice],
y: y_shared[batch_slice],
Z: Z_shared[batch_slice],
p1:p1_shared[batch_slice],
p2:p2_shared[batch_slice],
p3:p3_shared[batch_slice]},
on_unused_input = 'warn')
update_discrim = theano.function([batch_index],[dd[i] for i in dd],#[discrim_g_loss,discrim_d_loss,discrim_accuracy,pixel_loss,1-error_rate],
updates=discrim_updates,
givens = {X: X_shared[batch_slice],
y: y_shared[batch_slice],
Z: Z_shared[batch_slice],
p1:p1_shared[batch_slice],
p2:p2_shared[batch_slice],
p3:p3_shared[batch_slice]},
on_unused_input = 'warn')
# Dictionary of Theano Functions
# tfuncs = {'update_iter':update_iter,
tfuncs = {'update_gen': update_gen,
'update_discrim': update_discrim,
'sample': sample,
'Zfn' : Zfn,
}
# Dictionary of Theano Variables
tvars = {'X' : X,
'y' : y,
'Z' : Z,
'X_shared' : X_shared,
'y_shared' : y_shared,
'Z_shared' : Z_shared,
'p1' : p1_shared,
'p2' : p2_shared,
'p3' : p3_shared,
'batch_slice' : batch_slice,
'batch_index' : batch_index,
'learning_rate' : learning_rate,
'gd' : gd,
'dd': dd
}
return tfuncs, tvars, model
# Data Loading Function
#
# This function interfaces with a Fuel dataset and returns numpy arrays containing the requested data
def data_loader(cfg,set,offset=0,shuffle=False,seed=42):
# Define chunk size
chunk_size = cfg['batch_size']*cfg['batches_per_chunk']
np.random.seed(seed)
index = np.random.permutation(set.num_examples-offset) if shuffle else np.asarray(range(set.num_examples-offset))
# Open Dataset
set.open()
# Loop across all data
for i in xrange(set.num_examples//chunk_size):
yield to_tanh(np.float32(set.get_data(request = list(index[range(offset+chunk_size*i,offset+chunk_size*(i+1))]))[0]))
# Close dataset
set.close(state=None)
# Main Function
def main(args):
# Load Config Module from source file
config_module = imp.load_source('config', args.config_path)
# Get configuration parameters
cfg = config_module.cfg
# Define name of npz file to which the model parameters will be saved
weights_fname = str(args.config_path)[:-3]+'.npz'
# Define the name of the jsonl file to which the training log will be saved
metrics_fname = weights_fname[:-4]+'METRICS.jsonl'
# Prepare logs
logging.basicConfig(level=logging.INFO, format='%(asctime)s %(levelname)s| %(message)s')
logging.info('Metrics will be saved to {}'.format(metrics_fname))
mlog = metrics_logging.MetricsLogger(metrics_fname, reinitialize=(not args.resume))
model = config_module.get_model(interp=False)
logging.info('Compiling theano functions...')
# Compile functions
tfuncs, tvars,model = make_training_functions(cfg,model)
# Shuffle Initial masks
model['l_IAF_mu'].shuffle("Once")
model['l_IAF_ls'].shuffle("Once")
logging.info('Training...')
# Iteration Counter, indicates total number of minibatches processed
itr = 0
# Best validation accuracy variable
best_acc = 0
# Test set for interpolations
test_set = CelebA('64',('test',),sources=('features',))
# Loop across epochs
offset = True
params = list(set(lasagne.layers.get_all_params(model['l_out'],trainable=True)+\
lasagne.layers.get_all_params(model['l_discrim'],trainable=True)+\
[x for x in lasagne.layers.get_all_params(model['l_out'])+\
lasagne.layers.get_all_params(model['l_discrim'])if x.name[-4:]=='mean' or x.name[-7:]=='inv_std']))
if os.path.isfile(weights_fname) and args.resume:
metadata = GANcheckpoints.load_weights(weights_fname, params)
min_epoch = metadata['epoch']+1 if 'epoch' in metadata else 0
new_lr = metadata['learning_rate'] if 'learning_rate' in metadata else cfg['lr_schedule'][0]
tvars['learning_rate'].set_value(np.float32(new_lr))
print('loading weights, epoch is '+str(min_epoch),'lr is '+str(new_lr)+'.')
else:
min_epoch = 0
# Ratio of gen updates to discrim updates
update_ratio = cfg['update_ratio']
n_shuffles = 0
for epoch in xrange(min_epoch,cfg['max_epochs']):
offset = not offset
# Get generator for data
loader = data_loader(cfg,
CelebA('64',('train',),sources=('features',)),
offset=offset*cfg['batch_size']//2,shuffle=cfg['shuffle'],
seed=epoch) # Does this need to happen every epoch?
# Update Learning Rate, either with annealing schedule or decay rate
if isinstance(cfg['learning_rate'], dict) and epoch > 0:
if any(x==epoch for x in cfg['learning_rate'].keys()):
lr = np.float32(tvars['learning_rate'].get_value())
new_lr = cfg['learning_rate'][epoch]
logging.info('Changing learning rate from {} to {}'.format(lr, new_lr))
tvars['learning_rate'].set_value(np.float32(new_lr))
if cfg['decay_rate'] and epoch > 0:
lr = np.float32(tvars['learning_rate'].get_value())
new_lr = lr*(1-cfg['decay_rate'])
logging.info('Changing learning rate from {} to {}'.format(lr, new_lr))
tvars['learning_rate'].set_value(np.float32(new_lr))
# Number of Chunks
iter_counter = 0
# Epoch-Wise Metrics
# vloss_e, floss_e, closs_e, a_g_loss_e, a_d_loss_e, d_kl_e, c_acc_e, acc_e = 0, 0, 0, 0, 0, 0, 0, 0
# Loop across all chunks
for x_shared in loader:
# Increment Chunk Counter
iter_counter+=1
# Figure out number of batches
num_batches = len(x_shared)//cfg['batch_size']
# Shuffle chunk
# np.random.seed(42*epoch)
index = np.random.permutation(len(x_shared))
# Load data onto GPU
tvars['X_shared'].set_value(x_shared[index], borrow=True)
tvars['Z_shared'].set_value(np.float32(np.random.randn(len(x_shared),cfg['num_latents'])),borrow=True)
# Ternary adversarial objectives
tvars['p1'].set_value(np.asarray([[1,0,0]]*len(x_shared),dtype=np.int32))
tvars['p2'].set_value(np.asarray([[0,1,0]]*len(x_shared),dtype=np.int32))
tvars['p3'].set_value(np.asarray([[0,0,1]]*len(x_shared),dtype=np.int32))
# Chunk Metrics
metrics = OrderedDict()
for gkey in tvars['gd']:
metrics[gkey] = []
for dkey in tvars['dd']:
metrics[dkey] = []
# Loop across all batches in chunk
for bi in xrange(num_batches):
# Train and record metrics
if itr % (update_ratio+1)==0:
gen_out = tfuncs['update_gen'](bi)
for key,entry in zip(tvars['gd'],gen_out):
metrics[key].append(entry)
else:
d_out = tfuncs['update_discrim'](bi)
for key,entry in zip(tvars['dd'],d_out):
metrics[key].append(entry)
itr += 1
for key in metrics:
metrics[key] = float(np.mean(metrics[key]))
# Chunk-wise metrics
if (iter_counter-1) % 50 ==0:
title = 'epoch itr '
form = []
for item in metrics:
title = title+' '+str(item)
form.append(len(str(item)))
logging.info(title)
log_output = '%4d '%epoch + '%6d '%itr
for f,item in zip(form,metrics):
e = '%'+str(f)+'.4f'
log_output = log_output+' '+e%metrics[item]
logging.info(log_output)
# logging.info('epoch: {:4d}, itr: {:8d}, ag_loss: {:7.4f}, adg_loss: {:7.4f}, add_loss: {:7.4f}, acc: {:5.3f}, ploss: {:7.4f}, pacc: {:5.3f}'.format(epoch,itr,agloss,adgloss,addloss,accuracy,ploss,pixel_accuracy))
mlog.log(epoch=epoch,itr=itr,metrics=metrics)
# Log Chunk Metrics
# If we see improvement, save weights and produce output images
# if cfg['reconstruct'] or cfg['introspect']:
if not (epoch%cfg['checkpoint_every_nth']):
# Open Test Set
test_set.open()
np.random.seed(epoch*42+5)
# Generate Random Samples, averaging latent vectors across masks
samples = np.uint8(from_tanh(tfuncs['sample'](np.random.randn(27,cfg['num_latents']).astype(np.float32))))
np.random.seed(epoch*42+5)
# Get Reconstruction/Interpolation Endpoints
endpoints = np.uint8(test_set.get_data(request = list(np.random.choice(test_set.num_examples,6,replace=False)))[0])
# Get reconstruction latents
Ze = np.asarray(tfuncs['Zfn'](to_tanh(np.float32(endpoints))))
# Get Interpolant Latents
Z = np.asarray([Ze[2 * i, :] * (1 - j) + Ze[2 * i + 1, :] * j for i in range(3) for j in [x/6.0 for x in range(7)]],dtype=np.float32)
# Get all images
images = np.append(samples,np.concatenate([np.insert(endpoints[2*i:2*(i+1),:,:,:],1,np.uint8(from_tanh(tfuncs['sample'](Z[7*i:7*(i+1),:]))),axis=0) for i in range(3)],axis=0),axis=0)
# Plot images
plot_image_grid(images,6,9,'pics/'+str(args.config_path)[:-3]+'_'+str(epoch)+'.png')
# Close test set
test_set.close(state=None)
# Save weights
params = list(set(lasagne.layers.get_all_params(model['l_out'],trainable=True)+\
lasagne.layers.get_all_params(model['l_discrim'],trainable=True)+\
[x for x in lasagne.layers.get_all_params(model['l_out'])+\
lasagne.layers.get_all_params(model['l_discrim'])if x.name[-4:]=='mean' or x.name[-7:]=='inv_std']))
GANcheckpoints.save_weights(weights_fname, params,{'epoch':epoch,'itr': itr, 'ts': time.time(),'learning_rate':np.float32(tvars['learning_rate'].get_value())})
logging.info('training done')
if __name__=='__main__':
parser = argparse.ArgumentParser()
parser.add_argument('config_path', type=Path, help='config .py file')
parser.add_argument('--resume',type=bool,default=False)
args = parser.parse_args()
main(args)