-
Notifications
You must be signed in to change notification settings - Fork 1
/
run_training_cheyenne.csh
executable file
·45 lines (38 loc) · 1.39 KB
/
run_training_cheyenne.csh
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
#!/bin/tcsh
#SBATCH -J training
#SBATCH -n 1
#SBATCH --ntasks-per-node=1
## tried --gres=gpu:v100:1 (no constraint) and it was taking at least twice as long
#SBATCH --constraint=gp100
#SBATCH --gres=gpu:gp100:1
##SBATCH --mem=290GB
#SBATCH --mem=120GB
##SBATCH -t 24:00:00
#SBATCH -t 7:00:00
#SBATCH -A nmmm0021
#SBATCH -p dav
#SBATCH -e training.err.%J
#SBATCH -o training.out.%J
##PBS -S /bin/csh
##PBS -N "training"
##PBS -A NMMM0021
##PBS -l walltime=03:00:00
##PBS -q economy
##PBS -o run_training.out
##PBS -j oe
##PBS -l select=1:ncpus=36:mpiprocs=36:mem=109GB
##PBS -V
cd /glade/work/ahijevyc/NSC_objects
#used this version of ncar_pylib for training for paper (with python 3.6)
#ncar_pylib 20190326 ... kerasV2.2.4 tensorflowV1.13.1 scikit-learn 0.20.3
#source /glade/work/sobash/npl_clone_casper/bin/activate.csh
source /glade/work/ahijevyc/20190723/bin/activate.csh
module load cuda/10.1
#usage: neural_network_train_gridded.py [-h] [-s SPACE] [-t TIME]
# [--edate EDATE] [--sdate SDATE]
# [--members MEMBERS [MEMBERS ...]]
# [--plot] [--nopredict] [--notrain]
# [--year YEAR]
# [--latlon_hash_buckets LATLON_HASH_BUCKETS]
# [--force_new] [-d]
./neural_network_train_gridded.py $*